

A product of the Tahoe Science Advisory Council prepared by:
Alan Heyvaert – Desert Research Institute; TSAC co-chair
Christopher Knopp – Desert Research Institute consultant
Ed Parvin – US Geological Survey
Casey Schmidt – Desert Research Institute
Acknowledgements

This assessment of natural resource management systems is the result of a collaborative effort on the part of many individuals that contributed materials, useful edits and thoughtful reviews.

We recognize the contributions from members of the Tahoe Science Advisory Council:

Matt Busse – **US Forest Service, Pacific Southwest Research Station**
Sudeep Chandra – **University of Nevada, Reno**
Alan Heyvaert – **Desert Research Institute, TSAC Co-chair**
Zach Hymanson – **CA Natural Resources Agency**
Pat Manley – **US Forest Service, Pacific Southwest Research Station**
John Melack – **University of California, Santa Barbara**
Max Moritz – **University of California, Berkeley**
Ramon Naranjo – **US Geological Survey**
My-Linh Nguyen – **Nevada Division of Environmental Protection**
Ed Parvin – **US Geological Survey**
Marc Pitchford – **Desert Research Institute**
Steve Sadro – **University of California, Davis**
Geoffrey Schladow – **University of California, Davis; TSAC co-chair**
Scott Tyler – **University of Nevada, Reno**

Project assistance, comments and review were also provided by Dan Segan and Julie Regan at the Tahoe Regional Planning Agency. Additional program information was provided by representatives contacted at each program reviewed in this document. We appreciate their contributions, candor and patience during this effort. Any errors, omissions or misinterpretations are the responsibility of the TSAC authors.

This report is available at the Tahoe Science Advisory Council website: https://www.tahoesciencecouncil.org/.

Preferred Citation:

For more information contact:

Alison Toy
Tahoe Science Advisory Council
291 Country Club Dr., Suite 320
Incline Village, NV 89451
775-881-7566
natoy@ucdavis.edu
Executive Summary

The Tahoe Regional Planning Agency (TRPA) has started working with Tahoe basin stakeholders in review and assessment of the existing threshold standards and reporting requirements. As part of an overall Threshold Update Initiative, they are also interested in evaluating how well the TRPA threshold system achieves its intended purpose and whether other natural resource management programs around the country have developed practices that would be instructive or useful for application at Tahoe. Toward that goal, the Tahoe Science Advisory Council (TSAC) has undertaken a review of resource management programs to identify best practices and methodologies that could serve to advance the TRPA environmental threshold system.

The authors contacted program managers, assembled background materials, reviewed commonalities and differences in approach, and then summarized the main findings relevant to evaluating or updating the TRPA threshold evaluation system.

There are many similarities among the natural resource evaluation and management systems reviewed, including adoption of adaptive management principles. Distinctive approaches tend to reflect unique or constraining characteristics of the system under management, as well as motivating factors for public concern, funding levels, and historical legacy, among other factors. As at Lake Tahoe, many of these programs have been grappling with an over-abundance of objectives or indicators that are difficult or expensive to track, and not directly linked to management actions or specific objectives. Like the TRPA, these programs are also in the process of refining tracking requirements and finding more efficient ways to understand the consequences of existing policies and management strategies.

<table>
<thead>
<tr>
<th>Core Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Develop Focused Goals: Identify goals that are specific, measurable, achievable, relevant and time-based. Effective examples include the San Francisco Estuary Partnership and the Chesapeake Bay Program.</td>
</tr>
<tr>
<td>Use Conceptual Models: Describe linkages between program goals and important system components that demonstrate cause and effect relationships. Effective examples include the Delta Stewardship Council and the Chesapeake Bay Program.</td>
</tr>
<tr>
<td>Select Goal-Related Indicators: Good indicators meet the criteria of being measurable, precise, consistent and sensitive. Effective examples include the Chesapeake Bay Program and the Everglades Restoration Program.</td>
</tr>
<tr>
<td>Implement and Commit to Adaptive Management: This is essential for transferring information from monitoring and applied research to evaluate outcomes and inform future management actions. Effective examples include the Delta Stewardship Council and the Puget Sound Partnership.</td>
</tr>
</tbody>
</table>
Four core principles emerged as the basis for effective implementation and adjustments to natural resource evaluations programs. These are summarized in the adjoining text box. We believe the TRPA has already taken steps to implement each of these principles, although continued refinement to incorporate the details provided in this report would be beneficial to the threshold system.

In addition to the four core principles, we identify eight essential characteristics common to effective natural resource evaluation, management and reporting programs, as listed below. Some of these have been addressed in part by the TRPA, but continued development would enhance the performance and results of the threshold evaluation system.

- **Target key indicators.** Many programs deal with more indicators than they can afford to track and report on a regular basis. Ultimately, they tend to focus on a sub-set of key indicators to communicate their progress in detail, with other indicators or sub-indicators providing a supporting role or ancillary information for monitoring and evaluation purposes.

- **Use consistent terminology.** Terminology must be defined, accessible and consistent among stakeholders and the public for productive discussions and outreach communication. This can be particularly important when scientific terms or concepts are translated into planning and communications documents. Avoid jargon, and define new terminology for consistency across disciplines and documents.

- **Develop prioritization processes.** Limitations in funding and program capacity mean that choices must be made in selection of potential management actions. Different programs have developed various approaches to identify priorities among these options, and that transparently and explicitly link selected actions to indicators. A few examples are provided, but most rely in part on conceptual models and a decision support framework to inform prioritization and to provide documentation of the process.

- **Use monitoring to assess progress.** The iterative cycle of adaptive management requires monitoring, analysis, and reporting to inform management decisions. It is essential for tracking outcomes and for making adjustments to program indicators, objectives and trajectories. Monitoring has to be designed and integrated as part of an evaluation program that links to management decisions. Conceptual models are useful to inform the design. Such monitoring programs are not static, and should be subjected to regular review/revision to ensure the intended purposes are being achieved in a changing environment.

- **Incorporate independent scientific guidance.** Ecosystem management to sustain desirable functions and services is complex, working across specialized...
disciplines and sometimes producing unexpected results. Using the best-available science and integrating information across disciplines establishes a credibility that stakeholders collectively support. Independent scientific guidance and peer-review can objectively inform progress toward desired outcomes, selection of appropriate indicators, and identification of emerging issues.

- **Develop diversified funding sources.** Funding for monitoring, data analysis, and reporting is often vulnerable, and generally difficult to restore. Several programs have established funding groups or committees to develop additional sources of revenue to help stabilize the funding base for outcome tracking and reporting.

- **Distribute the reporting responsibility.** Assembling outcome implementation teams of committed stakeholders to develop monitoring plans, assemble and analyze the data, and report on progress can distribute the burden of responsibility and produce broader public support for the program. With each team focused on a specific outcome, they can apply a more specialized perspective and analysis of the results, and identify progress and adjustments needed to continue on desired trajectories.

- **Implement structured collaborative frameworks.** These are formalized agreements that document how multiple agencies and organizations will work collaboratively to achieve common goals and objectives of the program. They would be used, for example, to set up goal implementation teams or similarly targeted groups, and should be updated regularly as the objectives, responsibilities and support levels evolve. This prevents unnecessary overlap, facilitates communication, and creates broader stakeholder participation in the program.

Additional details are subsequently provided in this document to inform the application of these general principles and the essential characteristics of a resource management program. We explain the tenets of adaptive management in some detail because it is central to these efforts and most programs are still struggling to implement it in a cost-efficient manner. It should be acknowledged, however, that amongst all these programs the TRPA threshold evaluation system is somewhat unique in its regulatory authority, and the responsibilities it entails. We recognize this will create additional caution and constraints on the part of the TRPA as it seeks to modernize and streamline the structure and processes of its program during the Threshold Update Initiative.
TABLE OF CONTENTS

Acknowledgements .. ii
Executive Summary .. iii
Introduction .. 1
Background .. 2
Summary of Findings ... 3
 Core Principles ... 3
 Essential Characteristics ... 4
Suggestions for the TRPA Threshold Update ... 6
 Apply the adaptive management cycle .. 6
 Link science-based indicators with management action .. 8
 Implement an informative and cost-effective monitoring plan 10
 Periodically review and report on program goals .. 11
Cited References ... 13
Programs Reviewed .. 15
 Chesapeake Bay Program .. 15
 Delta Stewardship Council .. 20
 Everglades Restoration Program ... 25
 Great Barrier Reef Plan .. 30
 Great Lakes Water Quality Agreement.. 34
 Lake Champlain Basin Program .. 40
 Long Island Sound Study ... 46
 Puget Sound Partnership ... 51
 San Francisco Bay Estuary Partnership... 56
 Conservation Measures Partnership.. 60
Appendix A. Questionnaire Responses from Program Managers ... 62
Appendix B. Glossary of Common Terms Used in this Report .. 109
Appendix C. Selected Examples of Adaptive Management Cycles 113
Appendix D. Additional Program Graphics of Interest ... 115
Introduction

The purpose of this report is to evaluate a set of natural resource management programs from around the country for information relevant to updating threshold standards in the Lake Tahoe Basin. Management of natural resources to sustain ecosystem functions and services is complex. The interacting components that work at different temporal and spatial scales within ecosystems often produce unexpected responses. Desirable components of these systems can be affected by internal or external factors that may not be well understood or under the direct control of managers. The assemblage of stakeholders, agencies and other parties involved often represent perspectives that are not well aligned.

Yet strong public interest to conserve and restore natural resources with the functions and services they provide is indicated by the billions of dollars spent throughout the United States. These programs are generally charged with working through the complexities to 1) identify goals and the specific projects that will support those goals; 2) allocate funding across program areas; 3) quantify the outcomes and determine their effects; and in some cases 4) develop and implement regulations based on assessments. This document presents the results from an assessment of several natural resource management programs to determine the methods and practices used by these programs. The primary aim is to identify best practices and methodologies that could serve to advance the TRPA threshold evaluation system.

One of the more important factors that will contribute to the success of these programs is how science and management practices are integrated into an overall natural resources management program. In the face of challenges that resource management programs confront, various approaches have been developed to reduce uncertainty, inform decision-making, increase collaboration and test management options. Each of the programs reviewed in this document, including the TRPA, use some form of an adaptive management process to help guide decisions, but they each take a somewhat different approach in how they structure and manage their programs. This examination will highlight some of the important practices that seem to work well, which should help inform modifications to the Tahoe Regional Planning Agency (TRPA) Environmental Threshold System.

Several of the program representatives we contacted during this review indicated their interest in Tahoe’s Environmental Threshold system. In some cases, they had previously investigated Tahoe as they developed their own approaches, or they had incidentally adopted similar practices into their programs. Indeed, similarities among natural resource evaluation and management systems were common, indicating general adoption of adaptive management principles as well as dissemination of ideas among groups as they continue to search for effective management methods that will efficiently address their specific goals and objectives.
Background

The TRPA Threshold Update Initiative is one of seven strategic priorities set by the TRPA Governing Board in 2015. It was followed by the 2015 Threshold Evaluation Report that set the stage for implementation of this initiative, with the goal of reviewing and updating the environmental threshold system to 1) ensure a representative, relevant, and scientifically rigorous set of standards; 2) establish a cost-effective, feasible and informative monitoring and evaluation plan to support the standards; and 3) develop a robust and repeatable process for review of standards in the future.

Threshold standards are defined as standards “necessary to maintain a significant scenic, recreational, educational, scientific or natural value of the region or to maintain public health and safety within the region.” There are at present 178 different threshold standards, and the majority of them were adopted in 1982, based on best-available science at that time (Dan Segan, pers. comm.). There is a consensus among Tahoe basin stakeholders that it is time to review and update these standards and the monitoring systems that support them.

Toward that goal, the TRPA has started working with Tahoe basin stakeholders in review and assessment of the existing threshold standards and reporting requirements. Simultaneously, the Tahoe Science Advisory Council (TSAC) has undertaken a review of other national or international resource management programs to identify best practices and methodologies that could serve to advance the TRPA environmental threshold system.

The challenge of setting, evaluating, and reporting on benchmarks for environmental quality and resource condition is not unique to the Tahoe Basin. Across the country and around the world, government agencies and stakeholder groups are engaged in similar activities. In this examination of natural resource evaluation systems, TSAC representatives contacted program managers, assembled background materials, reviewed commonalities and differences in approach, and then summarized the main findings relevant to updating the TRPA threshold standards and the threshold evaluation system.

The resulting summary of relevant findings provided below is followed by a set of narrative program descriptions, along with answers to ten assessment questions addressed in the TSAC review of each program. In Appendix A we have compiled the responses to a questionnaire that was sent to each program manager.

The summary of findings and supporting materials presented in this document are intended to provide an overview and initial assessment of program characteristics that the TRPA may wish to consider as it begins to address its Threshold Update Initiative. We believe that more can be learned from a continued examination of the program features documented here, and invite interested readers to further explore the
individual programs summarized below and as represented in their corresponding program websites.

Summary of Findings

Various approaches have been taken by different regional programs to evaluate natural resource conditions and assess progress toward restoration. The distinctive approaches that develop tend to reflect the complexity and size of the system, the number and types of partners involved in management and assessment, the motivating factors for public concern, funding levels available, historical legacy when building on previously existing agreements or programs, and the degree of external oversight. They often began with ambitious objectives that grew over time to ultimately encompass a large number of targeted outcomes and indicators that were difficult or expensive to track and not directly linked to management actions or specific objectives. Many of these programs are now winnowing their tracking requirements down to a more concise set of primary objectives and indicators and finding ways to more closely link their decisions and management actions to desired results.

In the context of the current TRPA Threshold Update Initiative, there are some general principles that emerge as a basis for effective implementation and adjustments to these programs.

Core Principles

- **Develop Focused Goals:** A deliberative approach is required to achieve complex environmental restoration goals. Rather than general statements of vision, these should be developed as outcome-based goals, using all five SMART management criteria (Specific, Measurable, Achievable, Relevant and Time-based).

- **Use Conceptual Models:** Describe linkages between program goals and important system components with conceptual models that portray the most important cause and effect relationships, as currently understood. These models should represent dominant assumptions as well as known relationships for each linkage pathway, often with some indication of relative uncertainty. Conceptual models are used as tools to integrate knowledge, engage stakeholders, inform indicator selection, communicate management options, and guide the development of action plans.

- **Select Goal-Related Indicators:** Use results chains to link specific management actions through expected outcomes to desired impacts or goals. Results chains, also called logic models or theories of change, map out the known interactions and assumptions from conceptual models in a series of causal (“if – then”) statements that link expected short-term or intermediate outcomes to long-term goals. Good indicators meet the criteria of being *measurable, precise, consistent,* and *sensitive* and should be tied explicitly to outcomes (objectives) at different
stages in the result chain, which will lead to the desired impact (goal). Use this approach to clearly demonstrate how specific management actions will lead to desired outcomes as the basis for determining what needs to be measured and what indicators should be used.

- **Implement and Commit to Adaptive Management**: Adaptive management frameworks allow for efficient incorporation of new evidence into management decisions. A meaningful, outcome-based, iterative adaptive management process should be an integral part of a comprehensive environmental evaluation program. The adaptive management process must support the transfer of information from science efforts (i.e., monitoring and applied research) to active forums for interpretation of outcomes and determination of future management actions.

Essential Characteristics

Here we describe eight characteristics of effective natural resource evaluation, management and reporting programs. All of the characteristics are considered essential, and therefore of equal priority.

Target Key Indicators – Indicators are a core component of any natural resource evaluation system. Indicators are generally a numerical expression of a resource condition (e.g., 100 ft of lake clarity) or living resource (e.g., X acres of late succession forest habitat). Most programs have ultimately focused on a few key indicators, with names such as vital signs, apex indicators, the elegant few, or outcomes. The Everglades Restoration Program, for example, has focused on 11 strictly biological indicators responsive at different time scales to demonstrate short and long-term effects of resource management. The Chesapeake Bay Program links 31 desired outcome measurements to ten goal statements, and reports progress on each of the outcomes. The Great Lakes Water Quality Agreement (GLWQA) has identified nine high level indicators (Vital Signs) linked to nine GLWQA objectives, with 44 sub-indicators and 56 or more corresponding metrics.

Use Consistent Terminology – Consistent and practical terminology is an important factor in developing resource evaluation programs that: 1) link data obtained from monitoring to indicators; 2) translate well in assessment of management actions; and 3) communicate progress toward goals. Perhaps the weakest link in terminology is transitioning from what is measured directly (a metric) to the different levels or types of aggregation that ultimately lead to a reported indicator (sometimes called a measure, a sub-indicator, or an index). We show some examples of definitions for common terminology in the attached glossary (Appendix B).

Develop Prioritization Processes – Several of the programs examined have developed some method to prioritize management actions that link to indicators. Limitations in funding or program capacity, and emergence of new issues or changing policies mean that choices must be made in deciding future actions. Decision support systems that
include conceptual models and explicit information on system attributes and functions are valuable in developing rational, well-supported priorities. In the absence of adequate peer-reviewed literature, the Puget Sound Partnership developed the Puget Sound Pressures Assessment (PSPA) approach to evaluate relationships between stressors and endpoints, based on the assumption that understanding the largest stressors and most vulnerable ecosystem components (endpoints) is an important consideration for recovery planning. The PSPA used an expert elicitation method to rank the relative impacts of stressors on important ecosystem endpoints.

Use Monitoring to Assess Progress – Monitoring is an essential component of a natural resource evaluation program. Monitoring and associated analyses provide the data and results to inform future decisions. Effective monitoring identifies the target audience, the required knowledge, and the level of rigor needed to satisfy these needs. This monitoring should help validate assumptions, track objective (outcome) achievements, and provide information that can be integrated into current and future iterations of conceptual or quantitative models that may be used to determine the status of an indicator.

Incorporate Independent Scientific Guidance – All programs reviewed acknowledge reliance on the “best-available science,” and most have a science group integrated into the overall program structure. The science group may be external to the official program organization or it may be internal, but the strongest programs seem to have both (such as the Chesapeake Bay Program), with an internal group providing support for day-to day operations and reporting, while the external group provides independent scientific guidance, technical service, science collaboration and peer-review.

Develop Diversified Funding Sources – Funding for monitoring, data analysis, and reporting is often the most vulnerable, and generally difficult to restore. Several programs have established funding groups to develop additional sources of revenue for a more diversified and stable funding base and to find new efficiencies within existing programs for monitoring, evaluation and outcome reporting.

Distribute the Reporting Responsibility – Most programs have some form of periodic report card or indicator assessment that informs the public and stakeholders on progress toward achieving goals. This document can have many formats that provide differing levels of detail (e.g., high-level concise summary, or detailed technical report), and which are geared to different audiences (e.g., elected officials, the public, stakeholders, or government representatives). Assembling this information and interpreting results appropriately on a recurring basis is a considerable effort. The Chesapeake Bay Program has developed a set of Goal Implementation Teams, one for each outcome. These teams, formed across agencies and NGOs, are responsible for developing the monitoring plan, analyzing the data, producing the graphics that are used in reporting progress, and making data available. This occurs on a biennial cycle and keeps everything up to date for continued science-based assessment and evaluation, without placing excessive demand on the resources of the Program staff.
alone. This also facilitates stakeholder engagement and buy-in to the process and the products.

Implement Structured Collaboration Frameworks – Many programs have representative bodies, as well as science networks that comprise multiple agencies and organizations. Developing a formalized written structure for collaborative responsibilities and relationships is a key tenet of many programs. These structures can assist with distribution of labor, minimize gaps and overlap, and allow for a diversity of input into each program, while concentrating final decision making in executive agencies/bodies. In the Everglades, thorough cooperation agreements were drafted from the beginning of the program, and are updated regularly.

Suggestions for the TRPA Threshold Update Initiative

The following sections summarize additional factors learned from review of existing evaluation programs that we consider relevant to the primary objectives of the TRPA Threshold Update Initiative. Because adaptive management has emerged as one of the best tools available for managing complex ecosystems in the presence of uncertainty (Westgate et al., 2013), we present this first and explain it in more detail than the other sections. Subsequent sections simply aggregate a wide range of additional factors, in no particular order and the categorization is loosely applied. Similarities to findings previously summarized usually present some additional detail or highlight different aspects that are relevant.

A) Apply the adaptive management cycle.

Adaptive management is “a systematic approach for improving resource management by learning from management outcomes” (Williams et al., 2009). It is a structured, iterative process that supports decision-making while attempting to reduce uncertainty over time via monitoring and analysis. Despite the intuitive approach represented by this description, there are considerable variations in its application by different programs and large differences in perceived success from implementation (Gregory et al., 2006). Complications in adaptive management occur because the timeframes for monitoring and assessment do not match decision-making requirements or because key data is lacking due to incomplete or incorrect monitoring.

Each program in this review, including the TRPA, has applied some form of adaptive management as part of its strategy for guiding management decision-making in the presence of ongoing uncertainty and changing conditions. First developed as a science-based approach for natural resource management (Holling, 1978, Walters 1986), adaptive management was intended to reduce uncertainty over time through an iterative approach that evaluates response to selected actions or projects to ensure improvement in management planning and implementation directed at achieving specified objectives. The application of adaptive management can vary among programs, reflecting specific ecosystem characteristics and the management
requirements or constraints for each particular case. Identified steps in the process can range from as few as three to more than twelve.

As summarized by Westgate et al. (2013), with slight modification here, the adaptive management cycle includes these following steps:

1. Identification of management goals in collaboration with stakeholders.
2. Specification of multiple management options, one of which can be ‘do nothing’.
3. Creation of a rigorous evaluation process for interpreting how the system responds to management interventions. This stage typically involves creation of quantitative conceptual models and/or rigorous experimental design.
4. Implementation of management action(s).
5. Monitoring of system response to management actions (preferably on a regular basis).
6. Adjust management practice in response to results from monitoring and update the underlying conceptual model(s) to reflect these changes in practice and understanding of system behavior.

In Appendix C we show selected examples of the adaptive management cycles used by programs reviewed in this document. Each program is struggling to close the loop of the adaptive management iterative cycle in a cost-efficient manner.

Some authors distinguish between passive and active forms of adaptive management (Walters and Holling, 1990), although the usual case lies somewhere along the spectrum between these two types. Passive adaptive management may be appropriate when management constraints limit the testing of alternative actions, but then hypothesis testing is not as rigorous and the pace of learning can be slower. Active adaptive management develops and tests competing hypotheses regarding anticipated impacts of management actions, usually with several types of actions tested sequentially or in parallel. These generally require a larger investment of resources, but can often provide statistically testable information in a shorter period (Gregory, 2006).

The Puget Sound Partnership has made extensive use of the Open Standards for the Practice of Conservation (CMP, 2013) in its recovery planning and implementation of adaptive management. We recommend review of this same document by staff, scientists and stakeholders engaged in thresholds standards review and updating. Additional useful information related to adaptive management, indicator selection and ecosystem assessment approaches can be found in a document produced for the Delta Stewardship Council (Delta Independent Science Board, 2016) and in a technical report for the Puget Sound Partnership (McManus et al., 2014).

Clear governance structures, collaborative management, and open and effective communication are all critical elements for successful implementation of adaptive management programs (Berkes, 2009; Armitage et al., 2009; Hopkinson et al. 2017). Amongst the other programs addressed in this review, however, the Tahoe Threshold system is unique in that it forms the basis of a regulatory responsibility enjoined on the
TRPA. The success and broad acceptance of any future Environmental Threshold system for the Lake Tahoe basin will likely depend upon a transparent and collaborative management approach.

B) Link science-based indicators with management action.

- Although ultimate responsibility for setting Threshold Standards belongs to the TRPA, the engagement of other stakeholder groups in this process is critical to broad acceptance and support. See the description below on how the Chesapeake Bay Program uses Goal Implementation Teams to set work plans, develop management strategies and report on progress. These teams do not set the goals or desired outcomes, but they work collaboratively to achieve them.

- One has to recognize inherent differences between how standards, goals and policies are developed, compared to how plans for monitoring, evaluation and reporting are completed. Although linked, ideally, through the adaptive management cycle, they arise from different motivations and responsible parties. High-level governance structures give rise to standards, goals and policies, while working groups with scientific collaboration typically develop plans for monitoring, evaluation and reporting.

- Prioritization of indicators must focus limited resources on essential characteristics of the system. Initial screening should be based on formal evaluations using specific criteria (e.g., measurable, precise, consistent, sensitive) and coordinated stakeholder input. This should be followed by the application of a vetted and proven decision support system, or some alternative approach designed for the prioritization of these types of decisions, such as the expert solicitation process used by the Puget Sound Partnership.

- Conceptual models are essential tools used to describe our understanding of a system or resource and the factors affecting it. They are most useful when framed around program goals, and the appropriate indicators and metrics are integrated. Development (and ongoing update) of conceptual models is an essential underpinning to a logical and well-supported decision support system.

- It should be recognized that management objectives and policy priorities of natural resource systems do not remain static. Threats and opportunities change over time, especially in the face of increasing technology, population and climate change. The adaptive management cycle provides a mechanism for dealing with change when the iterative loop is successfully implemented.

- Various aspects of natural systems and management systems operate at different time scales. Indicators and monitoring should be designed to provide information on progress toward both short and long-term outcomes. As described below, the Everglades Restoration Program tracks a suite of indicators
designed to respond at different time scales. Program goals (and the associated indicators) must take this into account, and progress from management actions must be tracked at both scales.

- Responsiveness is an important criterion for successful management, and should always be considered when setting up the management structures and processes. Bureaucratic inertia must be considered and addressed so that appropriate levels of responsiveness can occur in the case of emerging threats, as recently exemplified by response to wildfire and aquatic invasive species threats in the Tahoe basin, for example.

- Document changes in management actions and policies to strengthen links to adaptive management. The development of restoration goals and changes in goals over time must document decisions based on the best available evidence, and should include revised objectives, corresponding actions, and expected outcomes. This should be accompanied by an organized approach to evaluate performance, measure progress and incorporate new information in an adaptive management cycle that supports continued programmatic evolution and progress.

Examples:

1) The Chesapeake Bay Program (CBP) negotiates all goals and outcomes through the Chesapeake Executive Council. Individual Goal Implementation Teams are responsible for meeting the outcomes of their particular goal area, and every two years must report to the Management Board on their work plans, management strategies and progress. If a goal or outcome needs to be changed, it is communicated to the Principals’ Staff Committee, which acts as policy advisor to the Executive Council and elevates suggested changes for consideration by the Council, with public input. Indicators are developed and assessed by workgroups and the Goal Implementation Teams, with science review provided by the Scientific and Technical Assessment and Reporting (STAR) team. The reason for change would be identified through the periodic evaluation process, using an adaptive management framework.

2) In the Everglades, conceptual models and the best available science are used to select indicators that respond to management actions or environmental perturbations at different time-scales, and across different ecosystem attributes. This can provide information on both short-term and long-term management actions, helps decipher ‘noise’ from longer-term changes to the system, and allows more rapid response to environmental perturbations. The selected indicators are designed to have some overlap so when system-wide improvements occur they should manifest in multiple indicators.

C) Implement an informative and cost-effective monitoring plan.
• To the extent feasible, goal-specific implementation teams or designated working groups should be made responsible for the selection, monitoring and reporting of key indicators. This distributes the responsibility and the burden of indicator monitoring and reporting across multiple stakeholder groups and agencies. It also generates a diversity of perspectives and approaches, as well as engaged consensus with the process and findings.

• The adaptive management framework should distinguish between effectiveness (performance) monitoring and implementation monitoring, both of which are essential for completing the adaptive management cycle. Effectiveness monitoring indicates the results or outcomes of management actions, while implementation monitoring tracks the accomplishment of management actions as outputs. Both the Delta Stewardship Council and the Puget Sound Partnership, for example, use the terms “output” and “outcome” to distinguish between measures of management actions and measures of ecosystem consequences, respectively.

• The Puget Sound Partnership links outcome statements to output statements in setting specific incremental goals. Thus, both the environmental health goal, and the management goal are monitored empirically and evaluated, which gives information on progress towards the goal and the efficacy of the management action.

• Over time, through adaptive management cycles, the inherent uncertainties associated with initial aspects of conceptual model components and linkages should diminish as the models are used to guide targeted research and monitoring that then makes them increasingly explicit and capable of predicting changes in response to management actions. Uncertainties will be reduced by designing research and monitoring programs around evaluating the response linkages to specified actions or conditions.

• Science contributions are generally orchestrated through one or more research institutions that are commonly represented by an independent science board, committee or council. The Science Advisory Board of the Great Lakes Water Quality Agreement for, example, provides advice, analysis and review or support on science priorities, assessment of progress, and science reports, opinions or updates on current and emerging water quality issues as well as coordinating the cooperation, communication and collaboration needed to achieve integrated monitoring on GLWQA objectives and metrics.

• Contributions from the science community should be carefully integrated with management actions and evaluations as part of the adaptive management process. This integration is facilitated when there is frequent organized interaction between the external science community and program technical staff. The Chesapeake Bay Program supports this approach with close
communication between internal technical staff and an independent external science body.

Examples:

1) The Puget Sound Partnership uses a pressures assessment approach to inform its monitoring design. In this approach they identify pressures from human action that give rise to stress on the ecosystem. An intrinsic vulnerability analysis explores the expected ecological response to stressor-endpoint pairs. This intrinsic vulnerability evaluation produces a model-based, assumption-bounded, estimate of vulnerability and allows the comparison of potential for harm when stressors act directly on endpoints. Stressors or endpoints that have high uncertainty indices are considered when research and monitoring priorities are set.

2) The Great Barrier Reef integrates science, research and monitoring at multiple scales in a program called “Paddock (agricultural field) to reef.” Models are developed by carefully evaluating the impacts of management and improved practices at the paddock and catchment scale. The relative impact on the reef of adopting that management or practice at a larger-scale is inferred from models. This process can be informative for creating and updating conceptual models and for guiding programs.

D) Periodically review and report on program goals.

- A formal reporting cycle is critical for communicating progress and return on investment. Many programs have changed the period of their reporting cycle over time, but they generally range from 2 to 5 years between in-depth reports.

- Staggered in-depth evaluation reporting will sometimes focus on specific aspects of the program, like the sequence of individual lakes evaluated by the Great Lakes Water Quality Agreement, where the burden of more frequent or comprehensive assessment is not supported by available resources. During interim periods, short informative videos and brief news releases can keep the program fresh and in the public eye pending the next detailed and comprehensive assessment.

- Most of the monitoring and scientific reporting should be peer-reviewed before publication, either internally or through a formal external process. Sometimes, evaluation reports on management progress are also peer-reviewed. There is a difference between whether the progress evaluation reports are peer-reviewed versus whether indicators and monitoring results are peer-reviewed. Appropriate peer-review of indicators and outcome expectations must be addressed whenever these change, as should be expected to happen on occasion within an adaptive management structure.
• Reporting and reports that are provided in a nested fashion can speak to different groups of stakeholders, whereby a reviewer or interested party can engage at appropriate levels by accessing more detailed information provided in supporting documents. Transparency and public participation is critical for designing this function so it can achieve its objectives. As discussed previously, the use of specialized terminology or jargon can be a barrier to effective communication. Therefore, terms and context must be described in detail and available to all stakeholders so there is a basis of shared understanding that supports engaged discussion.

• Many programs struggle with matching their reporting to initial evaluation goals of the program, often due to funding shortfalls, emergent issues, political or staffing changes, and missing or inadequate program documentation. Some successful programs divide their reporting into separate categories that include an essential focus on a small number of key attributes, indicators, and thresholds, and then reporting on peripheral aspects of the program. As funding waxes and wanes, there is a guarantee that core aspects will be evaluated thoroughly with the available funding, and peripheral evaluations will be conducted subject to time and funding constraints.

• Many programs are attempting to develop web-based data repositories that support the periodic evaluation reports. The more successful to date, use high-level data summaries and assessment for key indicators in an easy to understand format suitable for communicating progress to the interested public and associated stakeholders.

• The strength of linkage between indicators and goals or objectives varies within and between programs. How these are used to report progress varies accordingly. The Puget Sound Partnership uses outcome and output statements to focus on incremental or interim targets, where output statements are direct measurements of actions that affect outcomes. This provides two levels of progress reporting, one on an environmental health goal and the second on associated progress toward a management goal. The Chesapeake Bay Program links 31 desired outcome measurements to ten goal statements, and reports progress on each of the outcomes.

• Anticipating the linkages between management actions and environmental results is critical to an adaptive management cycle. These linkages should be explained by conceptual models that succinctly convey the dynamic interrelationships and strength of interactions between important environmental factors, system attributes and management options. Ultimately, these conceptual models help communicate decisions and progress to interested stakeholders and to the public.
Outreach and education are important aspects of communicating management efforts and progress to the public. An educated populace is better equipped to support science-based policy decisions when they understand the concepts, processes, and linkages between management actions and desired results.

Examples:

1) Ecological reporting for the San Francisco Estuary Partnership is focused on five subject areas: Water, Habitat, Wildlife, Process, and People. These subjects are described with 32 general metrics in the State of the Estuary report 2015, aimed at providing the public with a broad perspective of the Estuary’s health. Each of these general areas is subsequently described in more comprehensive scientific terms for those readers wanting more detail. This effort provides an excellent distillation of what would otherwise be an overly complex array of results. The Estuary News is also published four times a year with general interest topics. Short videos highlight special interest topics. These are available on the Partnership’s website. There is a Partnership Newsletter that describes single topic issues. The State of the Estuary Report is published every 5 to 6 years.

2) The Chesapeake Bay Program (CBP) Management Board established an Indicators Framework to organize information and communicate progress toward achieving the Watershed Agreement Outcomes. This decision framework identifies three types of information needed to support an adaptive management approach for each of their 31 outcomes: 1) what key influencing factors can be controlled to achieve the desired outcome, 2) has output matched the work plan and management strategies, and 3) do performance measures indicate progress toward achieving the outcome? Operating in an adaptive management cycle, this framework seeks to refine key assumptions on influencing factors and the desired outcomes. Each outcome is evaluated on a two-year cycle, and results are communicated to the public and to stakeholders in an annual Bay Barometer report. The corresponding Chesapeake Progress web site contains additional information on progress for the CBP oversight group and interested parties.

Cited References

Programs Reviewed

Chesapeake Bay Program (CBP)
(http://www.chesapeakebay.net)

Chesapeake Bay is the largest estuary in North America and was the first congressionally targeted for integrated watershed ecosystem restoration. Its watershed comprises 64,000 square miles, 150 major rivers and streams, six states, along with the District of Colombia, and is home to over 17 million residents.

Massive fish kills in the 1970s resulted in a $27 million, congressionally funded, five-year U.S. EPA study that identified excess nutrient pollution as the main cause of water-column hypoxia leading to rapid loss of aquatic life. The Chesapeake Bay Commission was established in 1980 to coordinate policy across state lines between Maryland and Virginia. Pennsylvania was added in 1985 to form a tri-state legislative assembly that promotes intergovernmental cooperation and coordination for resource planning. The Commission is a signatory to the Chesapeake Bay Agreement of 1983, signed by the governors of Maryland, Pennsylvania and Virginia, as well as the mayor of the District of Columbia, and the administrator of the U.S. EPA. The Chesapeake Bay Commission now serves a legislative function on the Executive Council of the Chesapeake Bay Program formed by the Agreement of 1983.

The 1987 Chesapeake Bay Agreement set numeric goals to reduce pollution and restore the Bay ecosystem. It was followed by Chesapeake 2000, a comprehensive agreement that established 102 goals to reduce pollution, restore habitat, promote appropriate land use practices, and to engage the public in restoration over a ten-year period through 2010. Governors from the headwater states of Delaware, New York and West Virginia have also officially committed to these goals.

In 2010 the EPA established the Chesapeake Bay TMDL, where each of the seven Bay jurisdictions was charged with creating their own jurisdiction specific Watershed Implementation Plans to meet pollution load cap goals by 2025. Most recently, in 2014, the six states, Washington DC, the Chesapeake Bay Council and the EPA signed a Chesapeake Bay Watershed Agreement that established science-based goals to guide the work of the Chesapeake Bay Program. This agreement established 10 goals and 31 outcomes for Chesapeake Bay restoration. The Chesapeake Bay Program currently lists 41 environmental indicators that are updated regularly to gauge success of restoration.

The focus has been on regional management organization and interstate cooperation, recognizing since earliest days of the Chesapeake Bay Program partnership that the initiative to clean the Bay has to come from the states to be successful. The Federal partnership, led by the EPA, helps to ensure coordination, facilitation, and oversight of this multi-state effort. Engagement of regional partners through the Chesapeake Bay Program under an adaptive management process, adopted in 2011, assures continued stakeholder engagement through Goal Implementation Teams.
Chesapeake Bay watershed map.

Chesapeake Bay Program organizational chart.
What is the major driver of the program or prioritization of main goals?
Environmental concerns emerged in the 1970s over eutrophication and damage to key habitats. Important aquatic species in the Bay were affected, resulting in threats to both commercial and recreational activities. The Chesapeake Bay Program now operates under the Chesapeake Bay Watershed Agreement of 2014, which established ten goals for collaborative management and restoration. The Agreement recognizes that these goals tend to be interrelated. For example, excess nutrients from many sources fuel algae growth in the water column, blocking sunlight to underwater grasses and damaging habitats, while excessive algae decomposition depletes dissolved oxygen and kills aquatic organisms and fish. The Chesapeake Bay Total Maximum Daily Load (TMDL of 2010) established limits for nutrient and sediment discharges into the Bay. There does not appear to be an established hierarchy for the ten goals of the Chesapeake Bay Program, although sustainable fisheries is generally listed first in Program websites and documentation.

How are indicators organized to provide an integrated evaluation system?
The Chesapeake Bay Watershed Agreement goal statements are supported by desired outcomes to restore the Bay, its tributaries and the lands that surround them. Forty-one associated indicators are used to assess progress toward these outcomes. Several of the outcomes are oriented toward achieving time-bound measurable targets. The ten goal statements are for: sustainable fisheries (with five outcome specifications), vital habitats (eight outcomes), water quality (three outcomes), toxic contaminants (two outcomes), healthy watersheds (one outcome), stewardship (three outcomes), land conservation (three outcomes), public access (one outcome), environmental literacy (three outcomes), and climate resiliency (two outcomes). Data are acquired and analyzed for each indicator to assess status and trends for reporting on progress toward desired outcomes.

How are management actions linked to indicator evaluations?
Management strategies and work plans are developed by Goal Implementation Teams. These management strategies indicate how Bay Program partners propose to achieve each outcome by 2025, as well as how they will monitor, assess and report progress. The strategies are further supported by successive two-year work plans summarizing participating partners, specific commitments, short-term actions, monitoring progress, data gaps and resources required for success. There are management strategies listed and two-year work plans developed for each of the 31 desired outcome statements. Furthermore, each of the seven Bay watershed jurisdictions have developed Watershed Implementation Plans (WIPs) that detail how and when each will meet their pollution-reducing goals (mainly associated with the 2010 Chesapeake Bay TMDL). Agreeing to achieve numeric goals within set deadlines has been a hallmark of the restoration approach taken by this Program since its Agreement of 1987.

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?
The Chesapeake Bay Program has used a series of science-based goals to guide restoration work since 1984, when the Scientific and Technical Advisory Committee
(STAC) was established to provide scientific and technical guidance to the Chesapeake Bay Program (CBP) on measures to restore and protect the Chesapeake Bay. STAC provides independent scientific and technical advice through independent scientific peer reviews, scientific and technical workshops, technical reports and position papers, discussion groups, assistance in organizing merit reviews of CBP programs and projects, technical workshops, and interaction between STAC members and the CBP. STAC serves as a liaison between the region’s scientific community and the CBP. Through professional and academic contacts and organizational networks of its members, STAC ensures close cooperation among and between the various research institutions and management agencies represented in the Bay watershed. Working with the STAC the CBP’s Scientific, Technical Assessment and Reporting (STAR) Team facilitates collaboration between science providers and Goal Implementation Teams to support CBP priorities and assist with management decision-making. STAR is responsible for updating and delivering data on the status and trends (indicators) of ecosystem conditions and for communicating these results to support the CBP decision framework. STAR provides internal day-to-day support for Goal Implementation Teams, while STAC is intended to provide an independent, external source of scientific and technical advice to the CBP. The STAC Chair is a non-voting member of the CBP Management Board.

What are the data requirements for the evaluation system?
Data requirements for outcomes are outlined in the biennial work plans of each Goal Implementation Team. Tracking factors contributing to 31 outcomes is a relatively data intensive effort. Each outcome is reported separately in the CBP biennial progress reports and on their website. The Chesapeake Information Management System (CIMS) is the CBP’s ongoing cooperative approach to ensuring all environmental data funded and generated by the partnership and its partners are made publically accessing for supporting management, decision-making, and communicating Chesapeake Bay and watershed information. ChesapeakeStat is currently accessible on the Chesapeake Bay Program website as a data sharing and warehousing website. ChesapeakeDecisions, currently in development, is supported by a series of internationally recognized models and collections of data for progress runs, as well as scenario builder tools that support multi-million dollar decisions.

How are evaluation results communicated?
Assessment of progress for indicators and watershed-wide restoration is issued as an annual CBP publication, the “Bay Barometer”. In addition, the framework for a CBP Tracking Tools website has been developed as part of ChesapeakeStat. A separate ChesapeakeProgress website has been established by the CBP to document progress toward goals and outcomes of the Chesapeake Bay Watershed Agreement. Linked to annual updates of the Bay Barometer report it functions as a public report card on progress toward each of the outcomes and provides access to data, methods and summary graphics.

How are evaluation results used to make changes to the program?
The Chesapeake 2000 document signed by Bay Program partners establishing more than 100 goals to reduce pollution, restore habitats and achieve other objectives. In 2009 ongoing evaluations indicated that restoration needed to accelerate, so short-term two-year restoration milestones were established that year and are now updated biennially for the water quality outcomes, and two-year workplans are developed for the remaining 31 desired outcomes by their corresponding Goal Implementation Team. As signatories of the Chesapeake Bay Watershed Agreement identify new opportunities and concerns, goals or outcomes may be adopted or modified. The Principals’ Staff Committee can approve changes or additions to outcomes, although significant changes or additions must be raised to the Executive Council for approval. Proposed changes to goals and outcomes or suggested addition of new ones will be open for public input before being finalized.

What are the main successful attributes of the program?
The annual Bay Barometer report documents progress toward each of the ten Chesapeake Bay Program goals and associated 31 desired outcomes. Because these goals and outcomes are generally based on quantitative time-based targets, they can demonstrate significant progress toward meeting several of these. The ChesapeakeProgress website is very well organized and executed, providing evidence-based results toward for the public and other stakeholders. Organization of the Chesapeake Bay Program Executive Council includes each of the state governors and the chair of the long-standing Chesapeake Bay Commission, as well a representative from the EPA. A variety of state and federal agencies participate as well as academic partners and NGOs are engaged in producing capital projects and in gathering data for assessing progress. These are organized in a responsive governance structure based on Goal Implementation Teams, which are a set of active working groups focused separately on each of the desired outcomes. The biennial reporting provides a timely feedback process for the adaptive management approach adopted by the CBP. The director of the CBP is an appointed representative from the USEPA. This assures accountability and focus among the many jurisdictional partners and agency representatives.

What are perceived weaknesses of the program?
The program started with many goals, but has reduced these over time. The CBP is highly dependent on federal funding to continue their restoration work and monitoring. This makes them susceptible to changes in federal budget priorities. Efforts are currently underway to diversify the funding sources, and to develop funding streams that will continue to support monitoring when budgets change and funding sources shift. The CBP website is slow and does not link directly to the ChesapeakeProgress website.

Estimate of funding used to keep the program operational.
A total of $536.4 million was invested by federal agencies in environmental restoration in the Chesapeake Bay watershed in fiscal 2016. The Office of Management and Budget (OBM) estimates that state and federal partners invested $1.8 billion for environmental
restoration that year, with much of it directed to support efforts for achieving the TMDL.
Delta Stewardship Council (DSC) (http://deltacouncil.ca.gov)

The Sacramento-San Joaquin River Delta is a legally defined area of approximately 1,300 square miles. It represents the most upstream extent of the San Francisco Bay estuary. It supplies California with 8% of its freshwater needs (but disproportionately provides southern California with 25% of its needs), and is the largest estuary in the western hemisphere providing essential habitat for 100 wildlife, 140 plant, and 13 taxa of fish listed as special emphasis species. It is also home to 11 historic communities, with 1335 miles of levees protecting 800,000 acres of land and infrastructure. Water supply, dependent species and local communities are all at risk due to their competing demands and the dynamic and changing water supply resulting from climate change.

Managing this is the responsibility of more than 18 primary agencies. In 2008, the State legislature established the Delta Stewardship Council (DSC) to regulate development and coordinate agency efforts to meet co-equal goals of providing a reliable supply of water and protecting and restoring the ecology of the Delta while preserving the Delta as a place. Health of the upper Delta is described in a 2015 Bay Estuary report as poor.

The concept the DSC represents is to regulate and limit development within the legally defined Delta, to coordinate applicable agency efforts to achieve co-equal goals, and to steer the process with unimpeachable science. The DSC implements its strategies through 73 Delta Plan Recommendations and 14 legally enforceable Policies that pertain to regulatory issues addressed by the Delta Plan. Recommendations effect tasks being done or to be done by other agencies that the Council believes are essential to attainment of the co-equal goals. Actions the recommendations engender are tracked in an online database, organized by relevant state and federal agency. Recommendations are further monitored via performance measures designed to capture important trends and to address whether interagency actions are producing expected results. The Delta Plan is currently being modified to update the performance measures. Policies are legal requirements that anyone undertaking a significant project in the Delta must meet.

The process the DSC uses is intended to be adaptive, utilizing best available science and objective decision making in an environment historically awash with conflicting science. To achieve credible, “best science”, the DSC includes a robust science team, and an Independent Science Board composed of 8 nationally acclaimed scientists selected from universities across the country. The head of the DSC’s science team is also a nationally known figure who generally serves a four-year term. The purpose of the Delta Science Program is to serve as an unbiased arbiter for current science for all agencies and to initiate and fund research on key topics to facilitate the coequal goals. Monitoring results and evaluation of performance measure data is accomplished or coordinated through the Interagency Ecological Program and the science team. Results are shared with an Interagency Implementation Committee who recommends changes to the Plan its policies and recommendations or its performance measures which completes the adaptive management cycle.
Map of the legally defined Delta illustrating water delivery and ecological restoration work. This area represents the upper end of the San Francisco bay Estuary, and demonstrates an overlapping authority.
What is the major driver of the program or prioritization of main goals?
The main driver for the Delta Stewardship Council’s (DSC) management plan is to coordinate state and federal agencies to resolve the long standing conflict for water use in the Sacramento and San Joaquin rivers. The conflict arises because agricultural interests and southern California communities require very large volumes of water to function which takes water out of the river system, depriving dependent fish and wildlife populations the fresh water they need to survive.

How are indicators organized to provide an integrated evaluation system?
The Council’s Delta Plan includes 160 performance measures in three categories: Administrative performance measures (118) are used to track various actions recommended by the Delta Plan. Output performance measures (21) are used to track results of administrative action (what happened as a result of the project or program?). Finally, outcome measures (21) are included for tracking the impacts of those actions (did the project or program achieve the desired results?). Staff monitors the progress of the 118 actions tracked by the Delta Plan’s administrative measures. Of these, 100 have either been completed or are in the process of being completed.

Delta Plan performance measures have been placed into three general classes:
1. Administrative performance measures describe decisions made by policy makers and managers to finalize plans or approve resources (funds, personnel, projects) for implementation of a program or group of related programs.
2. Output (also known as “driver”) performance measures evaluate the factors that may be influencing outcomes and include on-the-ground implementation of management actions, such as acres of habitat restored or acre-feet of water released, as well as natural phenomena outside of management control (such as a flood, earthquake, or ocean conditions).
3. Outcome performance measures evaluate responses to management actions or natural outputs. Core Output/Outcome Performance Measure Criteria

Performance measures are further broken down and evaluated as follows.
- Metrics define the unit(s) of measure and other characteristics for tracking aspects of performance over time.
- Baselines are standards or historical reference conditions for comparing with the current condition.
- Targets are the desired future conditions or trends.

How are management actions linked to indicator evaluations?
The Delta Vision Foundation (an outside group) annually prepares a report on the state of the Delta. The San Francisco Bay Delta Estuary Partnership prepares a Bi annual report on the state of the Delta, of which the DSC manages about a fifth of the estuary, and the Council prepares an annual report on the state of its efforts to achieve the co-
What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals? The Delta Science Plan coordinates interagency science efforts in the Delta. The Interagency Ecological Program (state and federal agencies) coordinates the broader San Francisco Bay Estuary monitoring including the Delta. Both organizations share individuals (the Ecological Program lead is a member of the Delta Science team), and have a productive collaborative working relationship.

What are the data requirements for the evaluation system? Data collection and management is coordinated by the Interagency Ecological Program and by individual participating agencies. Data requirements are established by the Delta Science Team and the Interagency Ecological Program, although individual agencies currently store their own data. The DSC Science program is the proposed repository for models, although individual agencies would perform model development in most cases. The Science program oversees the broader process, emphasizing the evolution of data into knowledge. See following diagram.

How are evaluation results communicated? Evaluations are tracked and communicated by:
1) An on line tracking database that follows agency progress with “recommendations listed in the Delta Plan.
2) Semi annual state of the Delta reports.
3) Delta Newsletter (Monthly)
4) Public Council Meetings (Monthly)
5) Videos of meetings and informational, subject specific videos
6) Science forums (annually), with explicit discussions of policy changes engendered by recent science.

How are evaluation results used to make changes to the program? The science team evaluates monitoring data and can directly or in combination with the Council staff recommend actions to the Council. The Council can also request review of issues from the Independent Science Board. Action can be taken at regular Council Board meetings based on staff recommendations, Science Team Recommendations or Independent Science Board recommendations. In addition, the Council can choose to advance issues to the Interagency Implementation Committee for review and/or action.

What are the main successful attributes of the program? The DSC’s Plan has been effective in coordinating multiple state and federal programs to improve their overall effectiveness and efficiency. The Interagency Implementation Committee has also provided a forum for face to face communication and exchange of ideas among agency leaders.

What are perceived weaknesses of the program?
Some believe the agency exerts too much control over Delta activities and development. Others believe the agency should offer explicit targets that are legally required. The Court in a recent ruling against the Council highlighted the latter issue as a deficiency of the Delta Plan.

Many of the controversial issues regarding water management were tied to the Bay Delta Conservation Plan. Since the fate of the BDCP is uncertain now, this may put additional pressure on the Delta Plan to provide the missing leadership.

Estimate of funding used to keep the program operational.
Funding is primarily received through State appropriations (27 million). Grant dollars are also received through various programs. The State limits the DSC’s authority to accept outside funding to approximately 7 million dollars annually. Funding has been relatively stable. Other agencies provide the bulk of project funding.

The DSC has approximately 64.5 permanent employees; approx. 12 on the science team and 52 on the management team. The 2016-2017 budget is:

- General administration: $5,490,000
- Planning & Performance Mgmnt: $6,040,000
- Science Program Salary & admin: $7,575,000
- Independent Science Board: $675,000
- Research funds: $7,000,000¹
- Interagency Ecological Program Lead: $200,000
- Total projected funding: $26,776,000.²

¹ In addition to the 7 million dollars of allocated funding for research, an additional 7.2 million dollars of authority to accept outside funding for research is authorized.
² The Interagency Ecological Program is an interagency effort to coordinate multiple agency monitoring budgets intended to reduce duplication and increase the value of state funded monitoring in the Delta. The Interagency Ecological Program's annual budget is approximately $22,840,000.
Everglades Restoration Program
(http://www.evergladesrestoration.gov)

Known as a river of grass, shallow freshwater marshes and tree islands dominate in the Everglades. Additionally, within the 18,000-square mile ecosystem there are four unique regions including a major lake, the riparian and estuarine system, mangrove and open ocean, and the iconic marsh. The basin covers all of South FL and contains over 6 million people, and significant agricultural land-use (sugar cane, citrus, cattle). The hydrology is heavily managed for flood-control, drainage, and ecosystem health. Man-made structures channel 1.7 billion gallons of water daily to the ocean.

Beginning in the 1950’s, the Army Corps of Engineers (ACOE) began a process of flood control and drainage that resulted in a complete hydrological modification of what was once a continuous ‘river of grass’. In addition to hydrological fragmentation, agriculture has increased the nutrient load resulting in significant shifts in vegetation and TMDLs. To restore natural flow, manage nutrients, and provide flood control for the growing populace, the US congress enacted the largest hydrological restoration project in the US called the Comprehensive Everglades Restoration Plan (CERP) in 2000, underneath the Water Resources Development Act of 2000 (WRDA). Defined by WRDA, a 14-member task force composed of local, state, federal and tribe members with the Secretary of the Interior as the Chair was created and a Science Coordination Group was established.

The Science Coordination Group was tasked with carefully selecting an ‘elegant few’ organisms that serve as indicators of system-wide ecosystem response. Considerations for these indicators include organisms that are responsive at various time scales (e.g. periphyton to crocodiles), most strongly linked to ecosystem disturbances and restoration actions (e.g. flood timing, salinity), cost-effectiveness and feasibility of monitoring, and ease of communication to decision makers. The indicators are designed to have a large degree of overlap so that when systemwide improvements occur, multiple indicators should respond, and the differential response among indicators can allow for the reevaluation of models. Based on this assessment, 11 strictly biological indicators were selected. It is difficult to compare these biologically-based indicators to other programs directly. The indicators are most comparable to individual Tahoe standards, although some of the Everglades indicators may have more than one standard. However indicators are counted, it is clear that this biologically-based indicator program, composed of a small number of indicators is unique.

The federal/state partnership between the ACOE, National Parks Service, and the South Florida Water Management District is an investment of over $10.5 billion dollars over 30+ years. Cooperation agreements were developed thoughtfully at the beginning of the program in WRDA, and are updated frequently. Fourteen stakeholders represented by the Task Force give input, although one state and one federal agency make the final decisions. Data is reported in a nested approach so engagement can occur at many levels. Systemwide science reports solely include the 11 system-wide indicators evaluated for each of the four regions, and then broader monitoring of many more standards is incorporated in to reports centered around each specific region.
Everglades Restoration Program area map.
What is the major driver of the program or prioritization of main goals?
Balancing the water needs of an expanding population with the needs of the ecosystem. Ecosystem protection includes the preservation of a variety of species and unique habitats, (oysters, seagrass, aquatic vegetation, wading birds, tree island, ridge and slough habitat). Hydrology is a significant driver in this ecosystem and therefore water stage, flows, and salinity are a primary concern. Additionally, managing the residual and current nutrient loading from agriculture is a significant component of this program.

How are indicators organized to provide an integrated evaluation system?
Indicators consist of 11 carefully chosen organisms that are known from science and monitoring to respond directly to changes in ecosystem components, and which are representative of different time-scale responses. Through the evaluation of these indicators, short and long-term responses to management actions, and ecosystem degradation across a wide array of biogeochemical, hydrological, and ecological attributes can be evaluated. The indicators are chosen specifically because they represent unique attributes, but also so there is a large degree of overlap. Resulting from these commonalities, it is expected that multiple indicators should react simultaneously. This allows for confirmation of improvements, and a reevaluation of models when responses aren’t synchronized. The Everglades has four major regional ecosystems, and key indicators are utilized to evaluate the health of each specific region. A systematic evaluation of the indicators and monitoring results takes place every 5 years. The number of indicators has declined over time but not as a result of a scientific assessment, but resulting from funding limitations.

How are management actions linked to indicator evaluations?
Indicators are chosen so they have direct responses to ecosystem attributes that can be affected by restoration and management. Through indicator evaluation, changes in salinity due to management of the lake can be described by oyster counts; the timing of controlled flooding can be evaluated through wading bird counts for instance for instance. As discussed previously, the strong overlap between indicators allows for the evaluation of system-wide responses to management over the short and long term.

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?
Collaboration is a significant part of the Everglades restoration and the leadership group has one representative from each agency involved. Significant planning and documentation has been used to structure these collaborative relationships from the beginning, and they have been updated regularly. Two main agencies (ACOE and South Florida Water Management District) make the final science decisions, although there is input and collaboration from over 12 agencies. Monitoring is done by principal investigators, and regional coordinators who are leaders in the region are chosen to oversee these programs.

What are the data requirements for the evaluation system?
(Not available.)
How are evaluation results communicated?
Results are communicated in a nested fashion. Large-scale results are communicated every five years for 11 indicators in System Status Reports to the public. Additionally, the results of more broad monitoring are reported within each of the four unique regions of the Everglades. The data is not available to the public generally, although they can be made available upon request. Generally this data is only available to key stakeholders. Lastly, they have hired a group from the University of Maryland for their upcoming report to improve communication.

How are evaluation results used to make changes to the program?
This process is primarily driven by conceptual ecosystem models. These models are used to predict changes, and evaluate management actions. These models are in the process of being updated for the first time in about a decade. As described previously, the 11 indicators were chosen to allow for an assessment of programmatic changes, and the updating of models. Given the expectation of an integrated and correlated response between indicators, any deviations in these responses are informative to models and the program more broadly.

What are the main successful attributes of the program?
The healthy collaborative relationships between many agencies and stakeholders, the size and complexity of the restoration program, and the scientific and engineering rigor are all known as strong attributes of this program. The most significant positive attribute is the methodology and the thought that went in to creating a small number of elegant indicators. The planners of the program understood that too many indicators can confuse results reporting and so they developed a method to decipher ecosystem response and management with a small number of indicators.

What are perceived weaknesses of the program?
Indicators have been reduced in scope not as a result of a science-based program evaluation, but as a result of limited funding. The restoration plan is far behind schedule, and the pace of capital investments has been limited. The program doesn’t stress emerging threats (i.e. climate change, invasive species) in a significant manner.

Estimate of funding used to keep the program operational.
Actual funding fluctuates annually as a result of property tax revenue to the South Florida Water Management District, and modifications to state funding. Additionally, land acquisition is a big part of this program, which creates years of high spending when large parcels are purchased. In FY2016 the adopted state budget includes a cost of $750 million, with $523 million in revenue from the SFWMD. Federal funding in FY2016 is approximately $200 million for a total of $950 million. The population in the basin is approximately 6 billion and the land- area is approximately 18,000 square miles. Normalized metrics of cost per person and cost per area are thus $58 per person, and $19,444 per square mile.
Approximately 73% of the program budget goes towards capital improvement projects, while the remaining portion is used for ‘adaptive assessment and monitoring, program coordination, and in-kind work’.

Given the price tag of $10.5 billion over 30 years, an annual estimate of project spending can be calculated. The population in the basin is approximately 6 million and the land-area is approximately 18,000 square miles. Normalized metrics of cost per person and cost per area are thus $158.33 per person, and $52,778 per square mile.
The Great Barrier Reef is a world heritage site bordering the state of Queensland in Australia that consists of approximately 3,000 reefs stretching over 130,000 sq mi. Thirty-five major streams discharge into the reef from a 164,000 square mile catchment, and the water quality of the reef is therefore intricately linked to land-use. Cattle is the predominant agricultural land-use (77%), although there are extensive sugarcane fields (1.4%), horticultural crops (0.2%) and other agriculture. The population in the basin is expected to reach approximately 1.6 million by 2026.

The motivation for the environmental assessment came from the World Heritage Committee’s recommendation in 1981 to protect the Outstanding Universal Value of the reef. In 2001, the Great Barrier Reef Marine Park Authority released a report on the decline in water quality in the reef, and an independent panel of scientists produced a report linking land-use to water quality degradation. It was observed that water quality is declining primarily due to nutrient, and sediment loads from diffuse non-point sources. The reef water quality protection plan was created in 2003, and updated in 2009, and 2013 based on inputs from an independent science panel. The main changes were driven by a slow adoption of BMPs, and declining water quality. The first report card was produced in 2009, and has been produced annually ever since.

The main focus of the program is on reducing diffuse non-point pollutant loads from streams, which benefits the reef directly and increases resilience towards climate change. Therefore, much of the focus of this program is on implementing, monitoring, and modelling best management practices in an adaptive process. This is strongly informed by direct experiments, precise monitoring, and field to catchment models and monitoring. The environmental health indicators are concise and consist of four management indicators centering around BMP implementation, a ground cover indicator, and three standards of nitrogen, sediment, and pesticide loading.

The assessment is managed by the Australian government and the State of Queensland, with partners ranging from research institutions, academics, farmers, private consultants, and traditional owners. The governments of Australia, and Queensland have committed $278 million over the next five years. The data is reported in report cards that rank progress towards 2018 goals. The importance of the indicators are weighted, and the scores are listed as academic scores (i.e., A, B, C, D, F).
Great Barrier Reef Plan area map.
What is the major driver of the program or prioritization of main goals?
The major driver of the program is declining water quality in the Great Barrier Reef from diffuse non-point pollution. There are 35 catchments discharging to the reef, and there is a significant amount of agriculture in the basin. Nitrogen runoff from fertilizer causes outbreaks of coral eating crown-of-thorns starfish; suspended sediment from various sources attenuates light and leads to seagrass and inshore reef loss; and climate change is causing large-scale bleaching events. The goal of the program is to decrease nutrient, sediment, and pesticide loading by implementing Best Management Practices. This will improve coral health and increase the resiliency of the reef to climate change.

How are indicators organized to provide an integrated evaluation system?
Monitoring data is collected at multiple scales from the paddock (field), to catchment to reef (Paddock to reef program). Monitoring at each scale informs the whole. Field-scale experiments on BMPs at the field level are evaluated, the data is modelled for the entire catchment to provide predictive results, and the water quality of the reef is evaluated.

How are management actions linked to indicator evaluations?
The major management in the basin is the application of BMPS in agriculture. The indicators themselves are composed of four management actions, which are simply the percent application of best management practices in four types of agriculture. Based on field-scale experiments this is modelled to the catchment scale. Monitoring at the catchment scale is used to assess management and modelling.

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?
Science partnerships have been significant from the very beginning. The original reef plan was spearheaded by a group of scientists. An independent science panel was created in 2009. The program is regularly re-evaluated in a holistic manner and this has resulted in frequent updates to the programs. The reef program has been updated twice since 2003 based on the slow adoption of BMPs and a continued decline in water quality.

What are the data requirements for the evaluation system?
(Not Available.)

How are evaluation results communicated?
The results are communicated via a report card that provides weights to the given indicators, and lists the results as academic scores (i.e. A, B, C, D, F).

How are evaluation results used to make changes to the program?
It is clear that this program has been in a state of flux since it’s inception. The program has been updated twice since 2003. This has been based directly on the evaluation results and the contribution of the independent science panel. Based on observations of slow BMP adoption, and declining water quality the plans have been updated.

What are the main successful attributes of the program?
The program has a strong focus on BMP implementation and capital improvement projects to reduce stream loading. There is a strong emphasis on science and research, that is manifested in experiments, field-scale evaluations, and modelling. The program has a strong record of reevaluation. This is both a positive and negative attribute as these reevaluations were driven partly by program failures.

What are perceived weaknesses of the program?
Based on available information this program is overly simplistic, disorganized, and lacks clear goals and indicators. This is especially true in comparison to the other programs evaluated. It has been difficult to find clear and concise information about details of the program, beyond simple statements of goals, and a simple report card. It is uncertain if this is from limited reporting to the public on the plan, or if the plan itself is limited. The funding appears to be small for such a large, and significant watershed.

Estimate of funding used to keep the program operational.
The Australia and Queensland government is spending $278 million over five years to run the program. Normalized to population and area, the costs are $34.75 per person and $339 per square mile respectively.
The Great Lakes of North America formed about 14,000 years ago at the end of the last glacial period. This group of lakes contains over 20% of the world’s total surface fresh water by volume. Surface area of the five main lakes is greater than that of the United Kingdom, about 94,250 square miles, and its drainage extends to more than 200,000 square miles (not including lake surface). This watershed crosses jurisdiction of two countries and eight U.S. states, with over 30 million people living in the Great Lakes Basin.

The International Joint Commission (IJC) was established in 1909 to address U.S. and Canadian transboundary water resource issues, primarily related to water use, diversion or obstruction. The Great Lakes Water Quality Agreement (GLWQA) was added in 1972 to address water quality issues resulting from pollution that caused excessive algal growth and bacterial contamination. This agreement established the Great Lakes Water Quality Board and the Research Advisory Board to advise the IJC. As new issues emerged over time, several GLWQA amendments were added to identify and address threats with renewed commitments to “science governance and action that will help restore and protect the Great Lakes water quality and ecosystem health.” This includes preventing environmental threats before they cause ecological harm.

The GLWQA amendment of 1987 established Lakewide Management Plans and Remedial Action Plans for Areas of Concern. The purpose of these action plans was to restore and maintain the chemical, physical and biological integrity of the Great Lakes Basin ecosystem, with a focus on Areas of Concern (AOC) that had at least one beneficial use impairment. The 16th and final Biennial Report on Great Lakes Water Quality was published in 2013. It identified a set of three Apex Indicators (Ecosystem, Human Health, and Response) that summarized trends over time from available data on 16 separate indicators: seven on chemical integrity, two on physical conditions, five on biological integrity, and two indicators of performance on AOC restoration.

The 2013 report acknowledged that although approximately 80 indicators were reviewed, most suffered from data gaps and short-term records. Specifically, the IJC recommended that “even in a time of budget austerity, the governments should allocate sufficient resources to monitor a core set of indicators,” and that targets, goals or standards be developed for each of the core indicators and resources provided to achieve the goals. A subsequent 2014 Great Lakes Ecosystem Indicator Project Report identified 41 individual measures (or metrics) that would support triennial assessment and reporting on the 16 key indicators.

The IJC is required to issue an Assessment of Progress Report, which will be informed by its current advisory boards: the Water Quality Board, the Science Advisory Board, and the Health Professionals Advisory Board. This report will be issued every three years based on the Progress Report of the Parties, the State of the Great Lakes Report, the advisory board reports, its own reports and extensive public consultation.
Great Lakes Basin (North America) and Areas of Concern (AOC) map.

Percentages of IJC indicators that have full, partial and no data for indicator calculation and detecting trends (from Great Lakes Science Advisory Board Research Coordination Committee, 2016).
What is the major driver of the program or prioritization of main goals?
Primary issues have evolved over the years, beginning with water use and allocation in the early 1900s, to phosphorus reductions in the early 1970s, persistent toxic substances and ecosystem approaches subsequent to that, and aquatic invasive species, harmful algae and climate change more recently. Overall, current goal is to restore and maintain the chemical, physical, and biological integrity of the waters of the Great Lakes Basin Ecosystem. The 2012 GLWQA amendment placed priority on monitoring and scientific assessment to evaluate progress of Great Lakes programs. There are currently nine GLWQA general objectives, related to restoring beneficial uses, with associated indicators and measures (metrics). International treaty and agreements provide legal structure for coordination and decision-making.

How are indicators organized to provide an integrated evaluation system?
As issues evolved over the decades, so have indicators. Ultimately, the sheer number of indicators became so large that despite being comprehensive it was difficult to assess and communicate progress. This led to a series of IJC workshops to evaluate the role and number of indicators, which had grown to approximately 80 by 2011. These workshops proposed a reduced set of 21 key indicators with 51 measures divided into two categories: one focused on factors that affect human health and the other focused on health of the ecosystem. A more recently updated approach identifies nine high level indicators (Vital Signs) linked to nine GLWQA objectives, with 44 sub-indicators and 56 or more corresponding metrics.

How are management actions linked to indicator evaluations?
Under Annex 2 of the GLWQA each of the Great Lakes must develop and then update a Lakewide Action and Management Plan (LAMP) every five years. These plans will address the nine General Objectives of the GLWQA but should also evaluate a set of Lake Ecosystem Objectives (LEOs) that are currently in development. It is anticipated that LEOs will be used as a systematic approach among the Lakes to specify interim and long-term ecological conditions needed to achieve the General Objectives, while being flexible enough to accommodate unique characteristics and challenges faced by each lake. The management actions and projects described in these reports are organized to address the LEOs. If not lake-wide, these actions are often directed at specific Areas of Concern (AOC) with the goal of achieving AOC delisting.

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?
The Lakewide Action and Management Plans use data derived from recent State of the Great Lakes Reports as well as from Cooperative Science and Monitoring Initiatives. Science and monitoring priorities are identified through lake-wide management discussions, with input opportunities available to all stakeholders and the interested public. These recommendations are then aligned with the GLWQA general objectives and the Lake Ecosystem Objectives to develop five-year priority plans for research and monitoring. At a higher level, the Great Lakes Science Advisory Board (SAB) reports directly to the IJC and orchestrates much of the binational research and monitoring that results in triennial Assessment of Progress on Great Lakes Water Quality and the
development of the triennial State of the Great Lakes Report. The SAB provides advice, analysis and review or support on science priorities, assessment of progress, and science reports, opinions or updates on current and emerging water quality issues. The binational research and monitoring program involves an intensive, management-related scientific examination of each Great Lake, on a staggered five-year rotational basis. The SAB helps coordinate the cooperation, communication and collaboration needed to achieve integrated monitoring on GLWQA objectives and LEOs. These are the core indicators for which monitoring and research is needed to provide the public and policy makers with scientifically sound information that help them make better monitoring, management and restoration decisions. There is an increasingly closer link between identification of management objectives, the selection of appropriate indicators, and coordination of metric monitoring that supplies the scientific information needed for progress evaluation. These links are supported by the SAB through a series of annual work plans, products from standing committees, science workshops, working groups and various reports.

What are the data requirements for the evaluation system?
It is recognized that ideally targets, goals or standards should be developed for each of the core indicators and that resources should be provided for the monitoring and restoration actions needed to achieve each of these goals. As described above, a core set of high level (apex) indicators have been selected for communicating progress to the public and associated stakeholders. These apex indicators are typically composed of several components (i.e., sub-indicators, measures and metrics) that are ultimately combined into one indicator. This requires individual datasets necessary for calculating each ecosystem indicator measure or metric and evaluated approaches for calculating the measures and reporting on indicator progress. Simply identification of the needed datasets was a major step towards implementation of these indicators within the Great Lakes Water Quality Agreement framework. The next step of identifying accessibility, integrating, and compiling the existing data into a dataset that can be used for calculating each measure is still a work in progress to assess the utility of the indicators and to identify data gaps. Additional indicators, beyond the core set, can be valuable for research and resource management purposes, provided the resources are available for addressing the needs of the core indicators first.

How are evaluation results communicated?
The governments of Canada and the U.S. must report to the public on progress in achieving objectives of the GLWQA through the Progress Report of the Parties, the State of the Great Lakes Report, and the Lakewide Action and Management Plans. Specifically, the large number of existing indicators was perceived as interfering with assessing status or trends and communicating progress to the public and stakeholder constituencies. Therefore, recent government efforts have focused on indicators tied to the 9 General Objectives of the Agreement. In addition, the IJC has developed a set of 8 “Vital Signs” based partly on a report from its Science Advisory Board and other advisory reports that identified a group of key measures of chemical biological and physical indicators (Vital Signs). These Vital Signs are considered indicators that most clearly and concisely communicate progress under the GLWQA, based on scientific
measurement of key parameters of ecosystem and human health. While any limited set of indicators will not measure all parameters desired to address progress, they should be sufficient to tell the story of progress and of problems in the ecosystem. This messaging about conditions and trends must be accessible to the general public and readily understandable. The first draft IJC triennial report on progress (2017) links SOGL Indicators to each specific GLWQA objective, then provides a narrative overview on that objective and associated indicator(s), some background, an assessment of status and trend with a summary graphic (when available) and discussion of management action efficacy, followed by a brief conclusion and identification of data gaps or other needs. Although not aligned yet in terms of release timing with the IJC report on progress, it is expected that the triennial State of the Great Lakes Report will communicate details of scientific data, results of analysis, and recommendations for indicator assessment. Ultimately, making these data publicly accessible data will not only increase the efficiency, consistency and transparency of the assessment of progress, but will also enhance the effectiveness of information delivery for public awareness and science based policy and management decision-making.

How are evaluation results used to make changes to the program?
The IJC, as well as representatives of the two governments have been through many rounds of program evaluation, indicator assessment, and metric analysis since the nine GLWQA objectives were formalized in 2012. During that time there has been a concerted effort to coordinate monitoring and assessment between groups for consistency and ecosystem scale coverage. There has also been a drive to develop a process for selecting a smaller set of indicators and metrics that can tell meaningful and compelling stories to the public. Selection factors have included completeness of data, relevance to ecological function, data quality, measurement error, discriminatory power, links to thresholds, and linkage to management actions. The IJC Science Advisory Board now recommends that this process be repeated on a regular basis as lake conditions, public interest and data availability change over time. Also, by adopting Lake Ecosystem Objectives, the program is evolving to incorporate lake-specific factors and threats that are not necessarily represented by system-wide GLWQA objectives. Great emphasis has been placed on the role of monitoring and assessment, along with peer-reviewed science so that wiser management decisions can target limited resources to help protect environmental resources worth billions of dollars.

What are the main successful attributes of the program?
Coordination between jurisdictional partners has been well supported under auspices of the IJC and GLWQA. In addition, there is strong support for the role of monitoring and assessment to help the public understand whether the integrity of the Great Lakes basin is improving or deteriorating. Specifically, the IJC recommends that “even in a time of budget austerity, the governments should allocate sufficient resources to monitor a core set of indicators, enable scientific diagnosis of causes of adverse trends and undertake remediation and prevention actions that are needed to achieve objectives.” Communication and outreach has been key in garnering support for the program.

What are perceived weaknesses of the program?
The Great Lakes are each different, so one size does not fit all in terms of developing priorities, standards and indicators. Terminology for tracking objectives and indicators has been confusing and variable (indicators, sub-indicators, measures, metrics, etc.) Also, the GLWQA restoration effort has largely supported by national funding sources (United States Environmental Protection Agency, and the Environment and Climate Change Canada), which are subject to the vagaries of national politics and sole source funding streams.

Estimate of funding used to keep the program operational.
The Great Lakes Restoration Initiative (GLRI) was launched in 2010 to help protect and restore this ecosystem. The Canada-Ontario Agreement (Canadian) and the Great Lakes Restoration Initiative (US) have been instrumental in achieving progress, especially since 2010. Sustainable funding is a key factor to success. Led by the USEPA from 2010 through 2014, the GLRI has provided approximately $300M USD per year following the first year, which was approximately $450 M. Subsequently, GLRI Action Plan II has been submitted to continue these programs for FY15-19.
Lake Champlain Basin Program
(http://www.lcbp.org/)

Lake Champlain is the eighth largest natural freshwater lake in the United States. It occupies a valley between the Green Mountains of northwestern Vermont and the Adirondack Mountains of northeastern New York. In addition to straddling the border of these two states, this 500 square mile lake also crosses into Quebec, Canada and ultimately drains into the St. Lawrence River. The watershed covers 8,234 square miles, with most of its western portion in Adirondack Park. Champlain Valley is the most heavily populated region of Vermont. More than 600,000 people live in the basin and about 250,000 people get drinking water from the lake, which has a 3-year hydraulic residence time.

The Lake Champlain Basin Program (LCBP) was created by congressional act in 1990 as part of an effort to develop a lake basin management plan that would protect and enhance the environmental integrity and social and economic benefits of the Lake Champlain Basin. The resulting plan “Opportunities for Action: An Evolving Plan for the Lake Champlain” was issued in 1996, and signed by the governors of New York and Vermont, as well as by Regional Administrators of the U.S EPA. That plan was updated in 2003, at which time the Premier of Quebec signed on as well. Then the plan was updated again in 2010.

The Lake Champlain Steering Committee is the formal, international, government-based institution that coordinates state and provincial policies and programs for the LCBP management plan. It meets quarterly. Membership includes senior staff from state and provincial governments, from seven US federal agencies, and the chairs for the specific committees (Citizens Advisory Committee, Technical Advisory Committee, Heritage Area Program Advisory Committee and Education and Outreach Committee), as well as a Lake Champlain Sea Grant Representative.

Recognized as a model for interstate and international cooperation, the primary goals of LCBP are to reduce phosphorus inputs to Lake Champlain, reduce toxic contamination, minimize the risks to humans from water-related health hazards, and control the introduction, spread, and impact of non-native nuisance species. Over the years, most of the funding for the program has been provided by the U.S. EPA, which has been administered by LCBP through a local grants program.

Agricultural and urban runoff from the watershed is recognized as the primary source of excess phosphorus, which exacerbates harmful algae blooms of cyanobacteria. Both Vermont and Quebec have agreed to reduce their inputs by 60% and 40%, respectively. Runoff from developed land and suburbs is estimated to contribute about 46% of the phosphorus runoff basin-wide to Lake Champlain, and agricultural lands contributed about 38%. The LCBP uses a Pressure-State-Response framework for data collection to assist decision-makers, and a series of Ecosystem Indicator Scorecards to communicate progress.
Lake Champlain watershed map.

Lake Champlain Basin Program indicators reporting example.
What is the major driver of the program or prioritization of main goals?

Since 1991, Lake Champlain’s ecosystem issues have changed over time including concerns with invasive species and cyanobacteria, but high phosphorus levels have remained a constant. Each iteration of Opportunities for Action has evolved as new concerns emerge. The Congressional legislation for the LCBP also highlights the regional connection to our unique cultural heritage and lake recreational opportunities and this, too, is reflected in Opportunities for Action.

How are indicators organized to provide an integrated evaluation system?

The 2017 draft LCBP Opportunity for Action (OFA) has four goals. The four goals are a consolidation of the eight specific goals from 2010 LCBP OFA.

- **Clean Water** - Improving the water quality of Lake Champlain and its watershed is critical in achieving progress towards a healthier environment. Strategies in this section focus on maintaining the current monitoring network, understanding the risk of toxic pollutants, and reducing nutrient inputs to water bodies.
- **Healthy Ecosystems** - Wetland and upland habitat, in particular riparian and shoreland habitat areas must be identified, prioritized, protected and restored in each sub-watershed. Native species must be conserved while the impact of aquatic invasive and non-native species is reduced through improved management strategies.
- **Thriving Communities** - As part of the Champlain Valley National Heritage Partnership, strategies in this section focus on preserving the rich cultural heritage of the watershed and connecting people to their landscape.
- **Informed and involved Public** - main tenet of the Lake Champlain Basin Program is providing valuable education to the public. This goal outlines ways to improve communication, scientific literacy, and cultural guidance to communities, partners, the media, K-12 educators and children.

Management plan breaks down the four goals into objectives, strategies, task areas and anticipated outcomes. The task areas will be reviewed on an annual basis to determine if progress was made or to identify areas of additional work.

The LCBP has divided Lake Champlain into 5 lake segments; Missisquoi Bay, Northeast Arm, Malletts Bay, Main Lake and South Lake. Missisquoi Bay, Main Lake and Northeast Arm are further divided into sub regions. Each region segment is monitored for 9 indicators divided into 3 categories.

- Phosphorus
- Human Health and Toxins
- Biodiversity and Aquatic Invasive Species
Phosphorus has three indicators including Phosphorus in the lake, Non-point source loading to the lake and Waste Water facility loading. Human Health and Toxins addresses Beach closures, Cyanobacteria blooms and Fish advisories for toxins. Biodiversity and aquatic invasive species address sea lamprey, aquatic invasive species and water chestnut infestation.

How are management actions linked to indicator evaluations?

The State of the Lake (SOL) report is a triennial report that utilizes an indicator score card to present the current status and the trends the data is indicating. The state of the Lake report appears to drive changes to the LCBP OFA, which is updated every 7 years.

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?

The LCBP program has 12 full time staff and 4 supporting scientists from regulatory agencies from New York, Vermont, US EPA, and Quebec. Additionally, the LCBP has 5 committees addressing five areas; Steering, Citizen advisory, Technical advisory, Heritage Area program, and Education and outreach.

The LCBP’s 25 member Technical Advisory Committee (TAC) composed of professional from academia, management and science agencies from Vermont, New York and Canada. The TAC presents the steering committee with technical information to be used for decision-making. The TAC also facilitates the technical aspects of the implementation projects, interprets monitoring program data, and advises the steering committee of emerging issues and prepares research or action to address those issues.

What are the data requirements for the evaluation system?

Measurement of mercury in ambient precipitation began in Underhill Center, VT in 1992. Event-based sampling and analyses have continued at this location since that time, making this site what is believed to be the longest continuous event-based record for mercury in precipitation in the world. The NADP/MDN program is currently funded through 2016 by a joint agreement between the Vermont Agency of Natural Resources and the LCBP.

Since 2004 the Lake Champlain Committee has trained citizens to distinguish algae from other lake phenomena and report on the presence and absence of blue-green algae blooms on a weekly basis during the summer. The LCC provides critical data on where and when blooms are happening and is relied on by municipal and state agencies to assess whether the water is safe for swimming.

The Long-Term Water Quality and Biological Monitoring Project for Lake Champlain began in 1992 and is conducted by the Vermont Department of Environmental Conservation and the New York State Department of Environmental Conservation with
funding provided by the LCBP and the two states. This program also conducts zebra mussel monitoring.

The Lay Monitoring Program of the Vermont Department of Environmental Conservation has used citizen volunteers to monitor eutrophication-related parameters at approximately 20 Lake stations during the summer season each year since 1979. Through use of consistent methods, the Lay Monitoring Program has provided a valuable long-term database with secchi depth readings and levels of total phosphorus and chlorophyll a.

In 2010, the VT DEC Watershed Management Division released the Vermont Surface Water Management Strategy to describe the management of pollutants and stressors that affect the uses and values of Vermont’s surface waters. This strategy presents goals, objectives and approaches for the protection and management of Vermont’s surface waters, and will help to guide future decision-making efforts to ensure efficient, predictable, consistent and coordinated management actions.

How are evaluation results communicated?

The State of the Lake (SOL) report is a triennial report that utilizes an indicator score card to present the current status and the trends the data is indicating. The LCBP web sites publishes or links to the various monitoring projects and data.

Lake Champlain basin program excels at involving and conveying information to the public. LCBP has an invasive species and Lake Exhibit at the ECHO Leahy Center for Lake Champlain. Echo sits on Burlington Water front at Lake Champlain in a heavily traveled area. The LCBP resource room at Echo sees 160,000 visitors per year.

How are evaluation results used to make changes to the program?

The LCBP is updated every 7 years utilizing data from the previous state of the lake reports. The LCBP also considers emerging issues for inclusion of the updated management plans.

Management plan breaks down the four goals into objectives, strategies, task areas and anticipated outcomes. The task areas will be reviewed on an annual basis to determine if progress was made or to identify areas of additional work.

What are the main successful attributes of the program?

Between 2011 and 2015 the LCBP has funded 330 projects ranging from curriculum development and cultural heritage recognition, aquatic invasive species recognition and nutrient reduction programs. The highlights of the LCBP accomplishments are the long term water quality monitoring program, cyanobacteria monitoring program, water chestnut harvesting and the boat launch steward program. The LCBP’s SOL report indicates that Phosphorous loading has had a net change of -27 metric tons per year,
water chestnut infestations are reducing, as are the occurrence of lamprey wounds in resident fish populations and fish advisories for toxins have remained steady.

What are perceived weaknesses of the program?

The LCBP SOL report does show that ground has been lost in Cyanobacteria blooms and beach closures. Harmful algal blooms are specifically addressed in the 2017 draft LCBP OFA Strategy 1.B.1: Control sources of contamination and is a listed extensively as a priority under the Clean water goal.

The numbers of indicators are few but are considered the major impacts of the lake. A focused approach of the monitored indicators is not necessarily a weakness. This approach of focusing on a handful of indicators is probably best suited for a large basin such as Lake Champlain with a diverse array of industry, agriculture, business and recreation.

The Lake Champlain Basin program is a non-regulatory program. Vermont, New York and Quebec determine their own TMDLs as approved by the USEPA or Provincial agencies. The LCBP role is to coordinate with regulatory agencies to develop and implement projects that will allow the States and Quebec to achieve those TMDL goals. It is unclear whether the lack of regulatory role hampers the LCBP ability to conduct their work.

Estimate of funding used to keep the program operational.

The LCBP has funded 12.72 million in technical projects including 3.98 million for monitoring between 2011 and 2015. Additionally the LCBP has funded $489,057 in education and outreach programs and $388,678 to the Champlain National Heritage Program.
Long Island Sound Study (LISS) (http://www.longislandsoundstudy.net)

The Long Island Sound watershed is a 16,820 square mile area. The sound itself is 1,320 square miles with an average depth of 63 feet. Approximately 23 million people live within 50 miles of the sound, which has an economic value of 9.4 billion dollars annually. The sound is home to over 120 species of fish. The impacts of New York City and other urban areas have adversely affected the water quality of the sound resulting in hypoxic conditions over broad areas.

The Long Island Sound Management Conference was formed in March 1988. Its membership is composed of EPA, the States of Connecticut and New York and numerous other state, interstate and local agencies and universities. The first Comprehensive Conservation and Management Plan (CCMP) was completed in 1994. Agency scientists provide basic scientific input to the Conference. Science oversight rests with the Science and Technical Advisory Committee that provides objective scientific and technical guidance to the Management Committee, working to synthesize research results, identify priority science needs, and support collaboration among the region’s scientists. Its members are engineers and scientists from government agencies, academia, industry, and private organizations, who represent a cross section of backgrounds and areas of expertise that are important to understanding and managing Long Island Sound.

In 2015 the Comprehensive Conservation and Management Plan was updated with the following goals in mind:

• Re-energize and broaden the current Management Conference around updated shared goals and cross-jurisdictional management;
• Set measurable ecosystem targets and management outcomes;
• Use strong science, ecosystem service concepts, and environmental indicators to adapt and refine management;
• Incorporate new areas such as sustainability, climate change resiliency, and environmental justice; and
• Expand public engagement and collaboration.

An example of one of the updates is the use of more understandable indicators. Indicators reflect the following themes: Water Quality, Climate Change, Habitats, Land Use and Population, and Marine and Coastal Animals. Each theme is described by multiple indicators, which in turn may represent aggregations of discrete metrics.
Long Island Sound Study management area.

Long Island Sound Study organizational chart.
What is the major driver of the program or prioritization of main goals?
The Comprehensive Conservation and Management Plan (CCMP) has four themes. Each theme has an overall goal. Those themes and associated goals are:

- **Clean Waters and Healthy Watersheds** – Improve water quality by reducing contaminant and nutrient loads from the land and the waters impacting Long Island Sound.
- **Thriving Habitats and Abundant Wildlife** – Restore and protect the Sound’s ecological balance in a healthy, productive, and resilient state for the benefit of both people and the natural environment.
- **Sustainable and Resilient Communities** – Support vibrant, informed, and engaged communities that use, appreciate, and help protect Long Island Sound; and.
- **Sound Science and Inclusive Management** – Manage Long Island Sound using sound science and cross-jurisdictional governance that is inclusive, adaptive, innovative, and accountable.

The primary driver for the program is to reduce hypoxic (low oxygen at depth) conditions in the Sound.

How are indicators organized to provide an integrated evaluation system?
The 2015 CCMP sets ambitious, but achievable, long-term targets for the Sound. These ecosystem targets are intended to drive progress toward attaining CCMP goals. Measuring, tracking, and reporting environmental indicators of each ecosystem target will provide information to assess progress and refine and adapt management as needed. The ecosystem targets are environmental indicators for which condition outcomes have been set. Supporting environmental indicators for which no outcome conditions has been set will continue to be evaluated to provide insight into the drivers of and responses to ecosystem change.

Water quality indicators, for example, are divided into four categories, each of which has been identified by the program as a priority area of concern. The categories include hypoxia (low dissolved oxygen) and nutrients; toxic contaminants; pathogens; and floatable debris. These indicators help resource managers assess recent and historical water quality trends, and management efforts to improve conditions. The water quality index is a calculation that combines several water quality measurements to rate overall water quality in Long Island Sound on an annual basis.

The EPA’s National Coastal Assessment (NCA) index has been used to evaluate water quality trends in Long Island Sound over the last two decades. The NCA index is based on five chemical and biological measures:

- Nitrogen (Dissolved inorganic nitrogen in surface waters)
- Phosphorus (Phosphate, or PO₄, in surface waters)
- Chlorophyll a (in surface waters)
- Dissolved Oxygen (in bottom waters)
- Water Clarity (Secchi disk depth)

Good water quality is defined here as water containing low concentrations of nitrogen, phosphorus and chlorophyll a, high concentrations of dissolved oxygen and high water clarity. The NCA Index Thresholds (click “Show/Hide Table Data” to view) rate each measurement as good, fair or poor based on the following thresholds:

How are management actions linked to indicator evaluations?
A team of federal, state and private stakeholders developed the CCMP’s goals and targets. Periodic review of monitoring data determines trends and the need for adjustments to the targets or actions. The interagency team produces an annual Plan of Work that outlines each specific project and its purpose.

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?
The LISS supports a science coordinator whose job is to lead and integrate science among the many scientists and organizations at work in the LIS watershed. The position is responsible for assisting in the development and management of technical projects and programs of the LISS, and developing and maintaining professional, scientific, and technical contacts among the LISS partners. The LISS Science Coordinator acts as science liaison between the LISS and federal, state, and local scientists and managers, and works with the external Science and Technical Advisory Committee (STAC) to prioritize LIS research needs and apply research results into LISS management actions. The STAC is comprised of around 35 scientists and engineers from government, universities, and NGOs. The STAC is headed by two co-chairs, one from Connecticut and one from New York. The STAC is advisory only and is not responsible for program tasks.

What are the data requirements for the evaluation system?
Data collection is dispersed among many different organizations. Funding is distributed by EPA to various agencies (about $2 million per year) to conduct the monitoring. Quality control is the responsibility of the collecting agency.

How are evaluation results communicated?
Biennial Reports. Comprehensive look at each CCMP theme. Hierarchical organization of information, from simplified results to comprehensive monitoring results.

“By the Numbers” quick perspective of overall health. Part of annual Sound Health.

Implementation Tracking reports This report summarizes the continuing work of the LISS Management Conference partners in carrying out the Comprehensive Conservation and Management Plan.
Miscellaneous reports These are usually single issue reports like “Nitrogen study”. It also includes annual Plan of Work.

How are evaluation results used to make changes to the program?
The 2015 CCMP include 139 implementation actions. The CCMP recommends that the implementation actions be reviewed and formally updated every five years. planned. More immediate changes can occur as a result of monitoring data or research showing a need, and the interagency team approving a desired change. The change would be reflected in the annual Plan of Work.

What are the main successful attributes of the program?
A clear translation and presentation of what hypoxia is, where it occurs and trends. The document is very understandable to the general public yet retains the technical details behind the simplification and attractive pictures.

What are perceived weaknesses of the program?
The lack of a centralized data management and GIS team impedes comprehensive analysis and presentation of data.

Estimate of funding used to keep the program operational.
The LISS budget is organized into the four Program Elements outlined below; the FY2016 LISS budget breakdown by Program Element is:

<table>
<thead>
<tr>
<th>Program Element</th>
<th>Amount</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordination and Reporting of Actions/Results</td>
<td>$447,245</td>
<td>9.6%</td>
</tr>
<tr>
<td>Public Outreach, Information and Education</td>
<td>$600,129</td>
<td>13.0%</td>
</tr>
<tr>
<td>Monitoring, Modeling and Research</td>
<td>$2,078,444</td>
<td>45%</td>
</tr>
<tr>
<td>CCMP Implementation, Technical Assistance/Regulatory Support</td>
<td>$1,502,302</td>
<td>32.4%</td>
</tr>
</tbody>
</table>

(from the 2016 Plan of Work)
Puget Sound Partnership (PSP)
(http://www.psp.wa.gov)

Puget Sound is the largest estuary by volume in the contiguous US. Carved by glaciers, it is a physically, biologically and chemically complex system of fjords, bays, flooded valleys, with 2,800 streams and a watershed exceeding 12,000 sq mi. There are over 4.7 million people in bordering counties (68% of the population of Washington State), and the region is expected to add 2 million people over the next 25 years.

The environmental health monitoring of the Sound is driven by a superfund listing, over 500 waterbodies requiring TMDLs, the listing of salmonids and orcas as endangered, NPDES stormwater permitting, and the WA State Legislatures creation of the Puget Sound Partnership (PSP) program in 2007. The PSP is a collaborative body that sets goals based on science and public priorities, stewards the collaboration of tribes, NGOs, NOAA, universities, and local and state agencies by focusing on a science-driven funding prioritization system to catalyze environmental restoration and health monitoring. Funding for the program is provided through the National Estuary Program. The legislatorial initiative required biennial reporting on recovery, monitoring, and environmental health, and the restoration of the sound to a healthier condition by 2020.

The assessment is driven by 6 recovery goals explicitly defined by state legislation to provide scientifically sound surrogates for ecosystem attributes that are relevant to management concerns, predictably responsive to management actions, linkable to a baseline condition, supported by available, high-quality data and understood by the public and policymakers. Progress towards these goals are measured using quantitative milestones categorized as 25 Vital sign categories (e.g. water quality, quantity, species & food web), and approximately 49 specific measurable indicators that are used to track goals (e.g. eelgrass acreage, # of resident killer whales). This monitoring is defined by ‘outcome’ statements (e.g. Orca counts), and ‘outputs’ that are measurable actions related to these targets (e.g. Boat traffic in Orca habitat after regulation). Focused on 2020 goals, the PSP is in the process of using adaptive management to decipher how monitoring data can be linked to management to guide this long-term restoration.

The partnership encompasses numerous organizations and for each indicator, a specific named individual and agency is listed for primary, secondary and tertiary leads, which serves to sub-divide responsibility in an explicit and distributed manner. Each monitoring unit is responsible for developing science-based approaches to the indicator including providing the data and interpreting the results. The Puget sound partnership is responsible for integrating and reporting the results to Washington Dept. of Ecology and the legislature and in the state of the sound report.
Puget Sound watershed as defined by the Washington State Legislature.

Puget Sound international watershed map.
What is the major driver of the program or prioritization of main goals?
The main goals were defined legislatively as six recovery goals including Healthy Human Population, Vibrant Quality of Life, Thriving Species and Food Web, Protected and Restored Habitat, Abundant Water Quantity, and Healthy Water Quality. Much of this was driven by a rapid growth in population in the basin, declining water quality, and the listing of salmonids on the endangered species list.

How are indicators organized to provide an integrated evaluation system?
The six recovery goals are a general statement of outcomes. Based on these goals, the Puget Sound Partnership (PSP) has created 25 Vital sign categories. These vital signs cover a broad range of ecosystem attributes. Within each of these vital signs are specific indicators that are measured to track progress, and link management actions to results, which results in 49 indicators.

How are management actions linked to indicator evaluations?
Indicators are evaluated for trends over time with a focus towards interim targets that which provide a roadmap towards achieving 2020 goals. The interim targets are explicitly defined by their linkage to management. The targets are composed of ‘outcome’ and ‘output’ statements. Outcome statements are specific incremental goals for one aspect of the environment. Output statements are direct measurements of actions that can affect the outcome. An example of an ‘outcome’ statement would be ‘89 orcas counted in the end of year census by 2020’, and an example of an output statement would be ‘evaluation of post-regulation vessel behavior completed’. In this manner both the environmental health goal, and the management goal are monitored empirically and evaluated. This gives information on progress towards the goal and the efficacy of the management action.

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?
The Technical and Scientific experts who collect the monitoring data are responsible for assuring the quality, and for providing the interpretation of the results. These results are collated by the Puget Sound partnership in to biennial reports. The partnerships consist predominantly with universities, state environmental agencies (WA Dept. of F&W, Ecology), the PSP, and consultants. One component of leadership is a Science Panel that develops a science-based plan to restore the Puget Sound, selects the indicators, gives input on project implementation, and defines information needs and research goals. The panel consists of members from NOAA, tribal fisheries, university professors, private timber company executives, and more.

In order to utilize expert guidance to determine program goals, an EPA-funded Puget Sound Pressures Assessment was completed that is worth elaborating on. Given the fact that sometimes there is no peer-reviewed literature on a given topic, or there is limited time to research, they utilized a published method called the ‘expert elicitation’ method. This is a defined methodology for using the input of lots of experts as objectively as possible, and analyzing the results in a scientifically-justifiable manner. Numerous
experts were asked to rank the relative impact of pairs of stressors, and to rank the most important 'end-points' (e.g. key species, habitat). Based on these pairs the experts were asked the sensitivity of the stressor-endpoint pair, the recovery time when exposed to a stressor, and the resiliency of the endpoint to the stressor. Furthermore, these pairs were categorized by the experts based on a probabilistic determination of their confidence in their answers. The results of this particular study created prioritized ecosystem components to evaluate, and impacts to manage that seemed intuitive.

What are the data requirements for the evaluation system?
(Not Available)

How are evaluation results communicated?
Evaluation results are reported in three summarized formats to the community, state politicians, and comprehensively in a biennial state of the sound report. The results are also shown on a detailed website.

How are evaluation results used to make changes to the program?
Changes to the program are made through a variety of different means. The science panel evaluates the program to track progress towards 2020 goals, evaluates the completion of programs, and the linkages between recovery efforts and ecosystem status. After this review, suggestions are provided. As with many programs, adaptive management is a key component of the program, although it’s implementation has been inconsistent. Conceptual models are used to understand the connection between recovery actions and ecosystem responses. The PSP holds ‘report card forums’ where the practitioners of recovery efforts are brought together to discuss, and share implementation strategies. Lastly, the PSP creates an effectiveness assessment to evaluate project implementation before the next round of recovery efforts. Based on this report, fact sheets are prepared for each type of restoration effort (e.g. shellfish restoration, removing shoreline armoring) that detail what works and what doesn’t.

What are the main successful attributes of the program?
There are several successful attributes of the program. One novel component of this program is the inclusion of a human well-being category. For such a complex ecosystem with such a diverse population, the number of indicators is low. As described above, it is clear that there is a good structure for evaluating the program from the science panel, and recovery practitioners. One of the most significant positive aspect of the program is the Pressures Assessment briefly described above. This is a method that allows for a prioritization of program goals when knowledge gaps are present.

What are perceived weaknesses of the program?
It is clear that the current goals of the program exceeds the current funding available. This has resulted in an inadequate implementation of adaptive management strategies, a lack of program goals in many areas, and insufficient monitoring results. Over 70% of the indicators don’t have short-term targets (2018), 30% have no long-term target (2020), and 55% of the indicators have no data currently. Many of the vital signs haven’t changed and are even deteriorating so it is clear that more is necessary.
Estimate of funding used to keep the program operational.
Based on the report of the PSP finance committee successful implementation of the program would cost $906-$1,184 million, the programs are funded at a level of $52-$708 million, which represents a gap of $295-$661 million. Normalized to program area and population respectively, the cost estimate of program funding is $193-$252/person and $75,000-$98,000 per square mile.
The San Francisco Estuary Partnership is a coalition of resource agencies, non-profits, citizens, and scientists working to protect, restore, and enhance water quality and fish and wildlife habitat in and around the San Francisco Bay Delta Estuary. The Partnership manages over $100 million in regional restoration, water quality and climate resiliency projects. The Estuary Partnership's host entity is the Association of Bay Area Governments. Like the Delta Stewardship Council, both agencies depend on a strong science component. The Estuary Partnership relies primarily on the expertise of its partners, and scientists from a wide variety of agencies who have worked to provide the metrics for the 2015 State of the Bay report and the Comprehensive Conservation and Management Plan (CCMP).

The guiding document for the Estuary Partnership is the 2016 CCMP. The plan includes 32 actions to be carried out over five years, (down from over 200 in the 2007 CCMP) connected to 35-year goals and objectives. By focusing on a more manageable number of priority actions, and updating priorities every five years, the Partnership believes they will be more responsive and adaptable in the face of uncertain and changing environmental conditions. While general on the surface, the metrics selected give a very good presentation of the health of the estuary (including the upper delta). They differ from the Delta Stewardship Council's (DSC) metrics by being primarily outcome-based measures while the DSC's are primarily Administrative and project tracking measures. This may be a moot point since the DSC is currently updating their measures to better match the San Francisco Bay Estuary's (in part).

Ecological monitoring and reporting for the Estuary Partnership is focused on 5 subject areas: Water, Habitat, Wildlife, Process, and People. These subjects are described with 32 general metrics, (in the State of the Estuary report 2015) aimed at providing the public with a broad perspective of the Estuary's health. Each of these general areas is subsequently described in more comprehensive scientific terms for those readers wanting more detail. This effort provides an excellent distillation of what would otherwise be an overly complex array of results. It follows similar examples provided by the Healthy Land and Water Project of Eastern Queensland, Australia (hlw.org, not formally reviewed here), and the Long Island Sound Study (longislandsoundstudy.net).

The San Francisco Bay Estuary Partnership has done a commendable job in tackling the difficult problem of simplifying its indicators and providing an understandable analysis.
San Francisco Bay estuary map.

CCMP GOAL 1
Sustain and improve the Estuary’s habitats and living resources

OBJECTIVES
- Protect, restore, and enhance ecological conditions and processes that support self-sustaining natural communities
- Eliminate or reduce threats to natural communities
- Conduct scientific research and monitoring to measure the status of natural communities, develop and refine management actions, and track progress towards management targets

CCMP GOAL 3
Improve water quality and increase the quantity of fresh water available to the Estuary

OBJECTIVES
- Increase drought resistance and water efficiency and reduce reliance on imported water
- Improve freshwater flow patterns, quantity, and timing to better support natural resources
- Reduce contaminants entering the system and improve water quality

CCMP GOAL 2
Bolster the resilience of Estuary ecosystems, shorelines, and communities to climate change

OBJECTIVES
- Increase resilience of tidal habitats and tributaries to climate change
- Increase resilience of communities at risk from climate change impacts while promoting and protecting natural resources
- Promote integrated, coordinated, multi-benefit approaches to increasing resiliency

CCMP GOAL 4
Champion the Estuary

OBJECTIVES
- Build public support for the protection and restoration of the Estuary
- Strengthen regional leadership in support of Estuary health
- Promote efficient and coordinated regional governance

San Francisco Bay Estuary Partnership goals.
What is the major driver of the program or prioritization of main goals?
The CCMP strives to restore vibrant, healthy habitats to some parts of the Estuary, and in turn help recover endangered species. In addition, despite population growth, we can still conserve water, grow wetlands, green cities, and protect wildlife.

How are indicators organized to provide an integrated evaluation system?
The SF Bay Estuary CCMP starts with 4 basic Goals, each with several Objectives. The Goals and Objectives are then linked to specific Actions that often are related to several Objectives (San Francisco Bay Estuary Partnership, 2016 CCMP). The State of the Estuary Report (http://www.sfestuary.org/about-the-estuary/soter/) includes 32 indicators of health that are monitored and will be reported on every 5-6 years. More may be added as data are collected and as the Estuary Blueprint exposes gaps (San Francisco Bay Estuary Partnership, 2016 CCMP).

The 32 Actions are further broken down into a number of specific Tasks. Actions are tracked by measuring programmatic progress as well as tracking the corresponding environmental Indicators within the 2015 State of the Estuary Report, where applicable.

Programmatic outputs reflect the work of many partners who have carefully provided input to develop outputs that are both achievable and that reflect a larger, ambitious vision for the Estuary. Each task in the CCMP links to a milestone with a year assigned for completion. In addition, tasks are linked to “owners” in the document. Owners are entities convening, stewarding, tracking, or implementing an action. “Collaborating partners” include entities working to support and sometimes implement tasks.

How are management actions linked to indicator evaluations?
As an EPA program, there are frequent and multiple reporting requirements. The Partnership must report on the progress of the CCMP to EPA, semi-annually, and have in depth program evaluations every 5 years by EPA. We also report on habitat acres restored, $ spent, leverage $, etc. to EPA every year. The Blueprint also supports other regional planning and policy docs that guide implementation, monitoring, etc (such as the SF Bay Joint Venture’s Implementation Plan, the Baylands Ecosystem Habitat Goals, the Subtidal Habitat Goals, and others) (Personal communication, Caitlin Sweeney).

What role do science partnerships play in establishing program goals and supporting the monitoring and evaluation of progress toward those goals?
We rely almost entirely on our partners for generating the science that we base our programmatic considerations on. We do not have an established “science team”, but instead a network of science partners that we work with. We rely on partners to help us report on regional progress as we act as more a clearinghouse of partners and partner work. Same for program goals and indicator reviews – both the Estuary Blueprint and the State of the Estuary Report involve extensive partner participation (Personal communication, Caitlin Sweeney).
What are the data requirements for the evaluation system?
We are not the central repository for data. The Estuary lacks a central repository, though it is certainly a topic of conversation among partners. Data collection and storage is the responsibility of the collecting agency (Personal communication, Caitlin Sweeney).

How are evaluation results communicated?
Some examples of communication of the programs progress are as follows. The Estuary News is published 4 times a year with general interest topics. Special edition publications using well know local authors to explain difficult issues. John Hart has been used for this purpose both with the San Francisco Bay Estuary Partnership and the Delta Stewardship Council. The Partnership also produces short videos highlight special interest topics. These are available on the Partnership’s website (sfestuary.org). The Partnership also may produce brochures on single topic issues such as green infrastructure. (sfestuary.org). The State of the Estuary Report is published every 5 to 6 years. (the last publication date was 2015) and the Partnership hosts the biennial State of the Estuary Conference (to date, twelve conferences have been held)

What are the main successful attributes of the program?
This most recent CCMP (released Sept 2016) provides a collaborative comprehensive regional vision for the future of the Estuary. It is both visionary and strategic, with clear, manageable, and trackable actions

What are perceived weaknesses of the program?
The Partnership needs to diversity funding sources even more – can’t depend on federal funding. Would like to better integrate with local communities, and with land use and transportation planning.

Estimate of funding used to keep the program operational.
Foundational seed money for the San Francisco Bay Estuary Partnership comes through EPA as authorized by the National Estuary Program (Section 320). On average EPA allocates about $600,000 per year to each of the 28 National Estuary Programs. This money is then leveraged with matching funds from non-federal sources by at least 16.5 times. The Partnership’s leverage rate has recently been as high as 1:68.

The Conservation Measures Partnership (http://conservationmeasures.org) is a coalition or collaboration among over 30 organizations intended to facilitate global conservation by improving communication and sharing experiences to speed implementation of cutting edge conservation management.

Its membership is made up of 31 international members. One of its primary products is a tool called the Rosetta Stone. The Rosetta Stone application is a way to decipher differences among various approaches to ecosystem management which allows more effective communication among groups following seemingly dissimilar paths. It compares approximately 20 different organization’s structures for ecosystem and adaptive management.

The other tool CMP provides is their Open Standards. It does not offer a list of preferred metrics, organizational structures needed to manage an ecosystem, or likely budget requirements. It primarily represents a way to interpret multiple approaches and to best fit that information into effective solutions for new problems. It does provide a forum for these discussions to occur and the breadth of the membership ensures a robust, well informed discussion.

With this in mind, the Conservation Measures Partnership (CMP) has worked over the past fifteen years to combine principles and best practices in adaptive management and results-based management from conservation and other fields to create the Open Standards for the Practice of Conservation. The Open Standards bring together common concepts, approaches, and terminology in conservation project design, management, and monitoring in order to help practitioners improve the practice of conservation.

The Open Standards are meant to describe the general process necessary for the successful implementation of conservation projects. They are not a recipe that must be followed exactly. Rather, they are meant primarily to guide programmatic decisions in project management (i.e., determining the best interventions for conservation success). Also, they are not designed to fully address administrative processes and functions related to, for example, budgets, contracts, and human resource management.

In the context of the Lake Tahoe Thresholds, the Rosetta Stone communication approach and the Open Standards template for evaluating and planning solutions may be too elemental, however, the resources the partnership provides present a gateway to draw new people in to share their experiences and to lead the Tahoe program into new areas of exploration and refinement. Their experience is global. The full potential of the Partnership’s approach is difficult to judge without greater involvement in their process.
Conservation Measures Partnership recommended open standards approach.
Appendix A. Questionnaire Responses from Program Managers.

Name of program: Chesapeake Bay Program (CBP)

Please provide short answers to the following six statements: strongly agree, agree, neutral, disagree, strongly disagree, not applicable, or your can provide a different qualified answer.

1) Our plan or program has a clearly stated purpose with tiered goals, objectives and actions to deliver the purpose of the plan.
 Strongly Agree – Through our most recent 2014 Chesapeake Bay Watershed Agreement. We have a vision, 10 goals, and 31 measurable outcomes in the Agreement. We have long-term management strategies for each outcome, and two-year workplans.

2) The program strives to be accountable for achieving its goals and must monitor relevant aspects of the environment to demonstrate status and progress.
 Strongly agree – we have indicators of progress, a web site dedicated to monitoring progress (ChesapeakeProgress) and a system of review of outcomes, management strategies, and workplans.

3) The best available science is regularly integrated into program assessments.
 Strongly Agree – the majority of the goals and outcomes of the Agreement specifically require the use of “best available science” to establish goals and assess progress.

4) Our plan utilizes an adaptive management process to direct research and management actions based on monitoring and/or modeling results.
 Strongly agree – We have been using adaptive management with our water quality goals for several years, the current Agreement calls for adaptive management on all other goals and outcomes, and we are putting monitoring and tracking programs in place, along with the previously mentioned strategy review process to use adaptive management process to manage actions for the rest.

5) As part of being accountable, progress towards achieving the plan goals is communicated objectively and regularly.
 Strongly Agree – we have indicators of progress that we use, we communicate through ChesapeakeProgress, annually through Bay Barometer, and do press releases throughout the year as indicators are updated.

6) Results must be expressed in terms understandable to the public and decision-makers, but the underlying data is available and easily accessible to all stakeholders.
 Strongly agree. We use ChesapeakeProgress for a more informed public and stakeholders, while our primary website offers news blogs that translates impacts into more layman’s terms.
This next set of questions can be answered briefly, or in longer form if you wish to provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated environmental indicators for your program? (This does not need to be an exhaustive or complete listing.)

10 goals
Sustainable fisheries – indicators include
- Blue crab abundance and management
- Oyster restoration
Vital habitats – Indicators include
- Fish passage miles
- Wetlands restored
- Submerged aquatic vegetation
- Forest buffers restored
- Tree Canopy planted.
Water Quality – Indicators include:
- water quality standards achievement for tidal waters,
- pollution reduction indicators for N, P, and sediment.
Toxic Contaminants
Healthy Watersheds
Stewardship
- Diversity
Land Conservation – Indicators Include:
- Land conserved
Public Access – indicator includes:
- Public access
Environmental Literacy
- Students involved in meaningful watershed experience
- Sustainable schools

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)

Because of the varied nature of our outcomes in the Chesapeake Bay Watershed Agreement, the Chesapeake Bay Program has not yet adopted a set of criteria that every new indicator must meet. In proposing and accepting new indicators, the Chesapeake Bay Program first looks for relevance to the Agreement outcomes and fit of the proposed indicator within the Indicator Framework that relates categories of indicators to outcomes in the Agreement. Furthermore, it is crucial to consider the adaptive management needs of Goal Implementation Teams—what information do they need to adaptively manage? What information will be most meaningful to associated teams and workgroups and inform their management actions? The Program also considers more general characteristics considered best practice, such as data availability, including
baseline information and future reporting; ability to show change and trends over time; public understanding of the issue; responsiveness to change; clarity in value; and appropriate scale.

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

The Chesapeake Bay Program negotiates all goals and outcomes through the **Chesapeake Executive Council** (EC), which includes the governors of the 6 states in the watershed, the mayor of Washington, D.C., the chair of the Chesapeake Bay Commission (a tri-state legislative body) and EPA on behalf of the Federal Government. The Program works through agreements signed by the EC and the most recent **Chesapeake Bay Watershed Agreement**, signed in 2014, lays out the vision of the CBP partnership, the 10 goals and 31 outcomes, and it lays out a process by which the Program develops management strategies and two-year workplans. Therefore, all goals of the Program are the goals of the “signatories” of the Agreement. Once a year, the EC gets together to renew their commitment to the Program and the partnership. In addition, Goal Implementation Teams (GITs), made up of the federal and state reps as well as various stakeholders, are responsible for meeting the outcomes for their particular goal area (e.g. the Sustainable Fisheries GIT is responsible for the coordination of activities that implement the outcomes under the Sustainable Fisheries goal in the Agreement. There is a **Management Board** whose responsibility is to manage across the GITs and identify policy issues that would need to be raised to the EC or their **Principals’ Staff Committee** (PSC), and there are Advisory Committees for citizens, scientists, and local governments that advise the EC.

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?

A crucially important aspect of the Program is that setting goals, monitoring, modeling, communication, and accountability are centralized. What is not centralized is how each state or stakeholder achieves the goals. Specifically, each state may have a unique approach, according to the way the state works, its laws, its regulations, and its relationship with the local governments, to achieve a goal or outcome and that is not going to be prescribed centrally. However, reporting on and managing progress to meet the goal is centralized through workgroups, GITs, the Management Board, the PSC, and the EC (the full organizational structure). The work is coordinated through this **organizational structure**.

11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?
For our water quality goal and outcomes, we have an extensive accountability system that includes a Total Maximum Daily Load (TMDL) for all tidal waters in the Chesapeake Bay for dissolved oxygen, clarity/submerged aquatic vegetation (SAV), and chlorophyll-a, individual jurisdiction Watershed Implementation Plans (WIPs) to complete actions that will reduce nutrients and sediment pollution by 2025 to meet the water quality standards, and two-year milestones each of the seven jurisdictions (six states and D.C.) commit to. Formal evaluations of the two-year milestones are done by EPA using modeled progress runs of the reductions each jurisdiction made. Evaluations are completed every year (one interim and one final evaluation for each two-year period). A midpoint assessment is being completed for the whole process in 2017, and adjustments will be made to the WIPs based on the midpoint assessment.

For the remaining goals and outcomes, a formal evaluation process has just been initiated, where each outcome is evaluated every two years through a process that involves the workgroup and GIT assigned to that outcome and the Management Board and workplans and management strategies are updated to reflect adjustments based on that evaluation.

The Chesapeake Bay Accountability and Recovery Act (CBARA) calls for an independent evaluator for the Chesapeake Bay restoration effort that is nominated by the EC and appointed by the EPA Administrator. The EC has yet to nominate the independent evaluator, but it is envisioned they would have a role in this process.

12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?

The agency representatives of the nine signatories of the Chesapeake Bay Watershed Agreement are involved at each level of the CBP partnership, from the EC (governor/administrator level), PSC (state secretaries/regional administrator level), to the workgroup level (subject matter experts), the scientific community and the public are involved through the advisory committees, and through open meetings and membership on GITS and workgroups. For regular reporting, it is done through workgroups and GITs to the Management Board. The Agreement calls for biennial reporting to the EC on implementation of the management strategies. Advisory committees are involved mainly at the Management Board, PSC, and EC levels, and all meetings are open to the public and all documents are available on the websites. Program goal review is done at the Management Board level through the Strategy Review System described above. If a goal or outcome needs to be changed, it would be elevated to the PSC and the EC with public input. Indicators are developed in the workgroups and GITs but have science review under the Scientific and Technical Assessment and Reporting (STAR) team. Indicators are used to report to the public as well as to help manage the outcomes and goals.
13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.)?

The *Chesapeake Bay Watershed Agreement* outlines a process for changing goals. If an outcome or a goal needs to be changed, it must go through a public process and be approved by the EC. It is intended the reason for a change would be identified through the periodic evaluation process using an adaptive management framework. The trend seems to be toward increased complexity rather than simplification and reports tend more toward progress in meeting the outcomes through indicators and through activity reporting. The water quality monitoring program provides periodic work on status and trends, and the Bay Barometer (annual) is like a report card to the public. Again, [ChesapeakeProgress](https://www.chesapeakebay.net) is the web site that provides information on progress to our oversight group.

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders generally perceive the science team as an independent and reliable source of information?

The science needs of the Chesapeake Bay Program partnership are driven by the consensus-based decision-making by the partners in support of work towards achieving the goals and outcomes under the *Chesapeake Bay Watershed Agreement* and prior similar agreements dating back to 1983.

CBP’s Scientific and Technical Advisory Committee (STAC) directly helps the partnership in both setting scientific and research priorities as well as the synthesis of existing scientific finding and technical data for application to management using a combination of quarterly meetings, partnership request independent scientific peer reviews, proactive and reactive scientific workshops, and independent evaluation by STAC itself.

STAC is composed of three sets of members: 14 members appointed by the states’ governors and the District of Columbia’s mayor (two per each of the seven jurisdictions); 21 members selected by STAC to fill specific areas of expertise to match with Chesapeake Bay Program partners’ priorities; and six federal agency scientists appointed by the CBP’s Federal Office Directors Workgroup.

The partners and stakeholders involved in Chesapeake Bay and watershed restoration have long perceived STAC as an independent and reliable source of information given the members and leadership have taken significant steps to ensure that independence by following clear protocols for keeping a degree of separation between STAC and the remainder of the larger CBP partnership.
15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?

Conceptual models have been utilized in different parts of the Chesapeake Bay Program partnership in one form or other since the partnership was formed more than three decades ago. Within the partnership, models are used extensively to support a range of collaborative decision making, a linked series of airshed-watershed-estuarine hydrodynamic-water quality-lower biological resources models to fisheries population models.

These models are used by the partnership to support the range of decisions and more—for developing and then populating indicators, targeting what to do where, to support Bay and watershed restoration, and in estimating pollutant load reductions based on implementation of specific sets of best management practices.

In helping formulate Bay-wide and basinwide policies, goals, commitments and strategies directed towards reducing nitrogen, phosphorus and sediment pollutant loads, the partnership has applied a suite of models and other decision support tools since the 1980s. Within the CBP partnership, responsibilities for model development, calibration, validation, independent peer review, and approval for management application are distributed across several groups within the management structure, including the Modeling Workgroup (model development, calibration, validation), STAC (independent peer review) and the Water Quality GIT (approval for management application).

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

Oversight and management of the Chesapeake Bay Program partnership’s monitoring networks have always been assigned to a specific multi-agency/multi-institutional group within the CBP’s management structure. Decision making about the networks and their operation, from field and laboratory methodologies to quality assurance to data management and shared data analysis has always been nested within the partnership.

Based on both stakeholder feedback as well as CBP senior agency managers’ requests, the partnership has periodically undertaken comprehensive reviews of and adjustments to individual monitoring programs or entire networks. Over the past 30+ years of the operation of these shared monitoring networks, there have been at least
fourof the formal monitoring network reviews, several undertaken in concert with STAC to ensure an independent perspective.

Millions of data points collected every year through the partnership’s monitoring networks are managed, undergo quality assurance and are shared online through the CBP partnership’s website following an established set of agreed to data management procedures. Following a common set of procedures are re-enforced through funding agreements (e.g., grant and cooperative agreement conditions) and a program-wide quality assurance program. Within the CBP management structure, there are specific workgroups charged within responsibility for reaching agreement on and then carrying out common and consistent data analysis and interpretation.

17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring and research, c) programmatic evaluation and reporting, and d) general program management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?

We have federal funding under appropriations from Section 117 of the Clean Water Act as amended in 2000 to coordinate, facilitate, and leverage activities that would help implement the Chesapeake Bay Watershed Agreement. However, all of our federal, state, and local partners contribute funds toward meeting our goals. The CBARA calls for us to report annually on federal and state funding activities. Funding under Section 117 is categorized in the CBARA reporting as follows:

- Program Operations and Support
- Partnership and data management support
- Water Quality Monitoring Grants
- TMDL implementation and Analysis
- Reporting and accountability
- Permit review and rule development, guidance, and implementation
- Enforcement
- Small Watershed Grant Program
- Innovative Nutrient and Sediment Reduction Grants
- State Implementation Grants

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?

In December 2010, the Chesapeake Bay TMDL was published by EPA, but developed working directly and cooperatively with all seven watershed jurisdictions. Prior to publication of the Bay TMDL, in 2008 the EC agreed to adopt an accountability system based on development of two-year milestones by each of the seven jurisdictions along
with the federal agency partners and public reporting on progress towards each of the two-year milestones and underlying commitments.

As part of the Bay TMDL, the partners agreed to conduct a midpoint assessment of progress in 2017, the midpoint between 2010 and the agreed to 2025 end date for getting all the practices on the ground necessary to reach each jurisdictions’ Bay TMDL goals and commitment. The Bay TMDL has brought a regulatory focus within a voluntary partnership, which has caused some concerns, but at the same time it has resulted in reduction of millions of pounds of nutrient and sediment from reaching Bay tidal waters.

19) Is your conservation plan recognized as excelling in some area, and what is it?

We believe the Chesapeake Bay Program partnership has been nationally and internationally recognized for our strong shared decision-making governance structure, well into its fourth decade, for making significant reductions in nitrogen, phosphorus and sediment pollutant loads from a wide array of source sectors, for progress on restoration of fish passage to oyster reefs to underwater bay grasses, to permanent land conservation of millions of acres watershed-wide to adding hundreds of new public access locations throughout the watershed and along the Bay’s tidal shorelines.

20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?

There are always areas to improve upon, and the midpoint assessment for the water quality goal, as well as the Strategy Review System, will continue to identify areas to improve. In addition, we are looking to improve our capacity for socio-economic issues, including developing indicators, optimizing tools and targeting based on multiple outcomes and return-on-investment. It is unclear moving forward whether we will have funding or program capacity because the Fiscal Year 2018 (FY18) President’s proposed budget currently zeroes out funding for the EPA Chesapeake Bay Program Office and much of the other functions of the partnership. However, since Congress has not acted yet on the FY18 appropriations, funding for this improvement is unclear.
Name of program: **Delta Stewardship Council**

Please provide short answers to the following six statements: strongly agree, agree, neutral, disagree, strongly disagree, not applicable, or your can provide a different qualified answer.

1) Our plan or program has a clearly stated purpose with tiered goals, objectives and actions to deliver the purpose of the plan. **Strongly agree.**

2) The program strives to be accountable for achieving its goals and must monitor relevant aspects of the environment to demonstrate status and progress. **Strongly agree.** The Delta Plan is implemented in large part by agencies other than the Delta Stewardship Council, and likewise, the Council relies on monitoring performed by those agencies as well as our own.

3) The best available science is regularly integrated into program assessments. **Strongly agree.** The Delta Reform Act requires the Delta Stewardship Council to use best available science in developing and implementing the Delta Plan.

4) Our plan utilizes an adaptive management process to direct research and management actions based on monitoring and/or modeling results. **Agree.** The Delta Reform Act (Water Code 85308(f)) requires the Delta Plan to “include a science-based, transparent, and formal adaptive management strategy for ongoing ecosystem restoration and water management decisions.” The Delta Plan details a three-phase, nine-step adaptive management framework that is referenced in the Delta Plan governance regulation (GP 1), and is therefore required for projects deemed “covered actions.” We are also adaptively managing the Delta Plan itself by following the adaptive management framework for the review of the Delta Plan as required by the Delta Reform Act to occur at least one every five years. In addition, the Delta Independent Science Board (ISB) is required to review all of the “scientific research, monitoring, and assessment programs that support adaptive management of the Delta.” Truly implementing adaptive management is challenging as outlined by the Delta ISB (http://deltacouncil.ca.gov/docs/final-delta-isb-adaptive-management-review-report), and we are also working with others to break down the barriers to adaptive management.

5) As part of being accountable, progress towards achieving the plan goals is communicated objectively and regularly. **Agree.** The Council’s Performance Management unit has developed a dashboard showing the status of Delta Plan administrative performance measures as well as an online project tracking tool, Delta View. The Performance unit is also working with other agencies and stakeholder groups to refine all Delta Plan performance measures (administrative, output and outcome), including clearly identifying metrics, baselines, targets and data availability. Each year the Council publishes a progress report on the implementation of the Delta Plan that highlights the work of the Council’s staff as well as the work of the Council’s partner agencies, whose efforts help implement the
Delta Plan and advance the State’s coequal goals of water supply reliability and Delta ecosystem restoration.

6) Results must be expressed in terms understandable to the public and decision-makers, but the underlying data is available and easily accessible to all stakeholders. Agree. The Delta Stewardship Council is currently working with the California Water Quality Monitoring Council as well as DWR, DFW and SWRCB to support implementing the 2016 Open and Transparent Water Data Act (AB 1755), which requires collection and sharing of water data, including the data supporting Delta Plan performance measures.

This next set of questions can be answered briefly, or in longer form if you wish to provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated environmental indicators for your program? (This does not need to be an exhaustive or complete listing.)

The overall goals for the Delta Stewardship Council and Delta Plan are the coequal goals as described in our authorizing statute, the Delta Reform Act: "...the two goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem. The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." (CA Water Code §85054).

The broad policy objectives to meet the coequal goals are:

- A More Reliable Supply of Water for California
- Protect, Restore, and Enhance the Delta Ecosystem
- Protect and Enhance the Unique Cultural, Recreational, Natural Resource and Agricultural Values of the California Delta as an Evolving Place
- Improve Water Quality to Protect Human Health and the Environment
- Reduce Risk to People, Property and State Interests in the Delta

These are followed by strategies, policies and recommendations, and performance measures.

Delta Plan performance measures are in three general classes:

- Administrative performance measures
- Output (also known as “driver”) performance measures and
- Outcome performance measures.

These are measured by:

- Metrics that reflect the performance measure to be quantified, its unit(s) of measure and other characteristics for tracking aspects of performance over time.
• Baselines are standards or historical reference conditions for each metric comparing with the current condition, and
• Targets, which are the desired future conditions or trends stated in terms of specific metrics.

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

Plan goals and objectives, from necessity, fit into a web of legislated authority and existing authorities of other agencies. Delta Plan implementation is promoted through the 17-member Delta Plan Interagency Implementation Committee (DPIIC; http://www.deltacouncil.ca.gov/delta-plan-interagency-implementation-committee-3), which serves as a forum to discuss, consider and orchestrate the timely and orderly implementation of actions consistent with the policies and recommendations outlined in the Delta Plan. The Delta Stewardship Council, DPIIC and the Delta Science Program promote the “One Delta, One Science” approach outlined in the Delta Science Plan to enhance current multiagency collaborative approach research and monitoring collaboration. Collaboration is an art, requires interpersonal skills, and a good knowledge of what other groups are contributing in order to have others pull together for a larger cause.

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?

Decision-making stays within each individual agency’s authority, but coordination and collaboration among the agencies is promoted through DPIIC and through the collaborative approaches taken by the Council and Science Program.
11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?

The Council prepares an annual report on the state of interagency efforts to achieve the coequal goals. See this link for the 2016 Annual Report (http://deltacouncil.ca.gov/docs/2016-annual-report-0). The Council is currently considering amendments to the Delta Plan in three areas: refining the Delta Plan performance measures as described above, incorporating the Delta Levees Investment Strategy (DLIS) and incorporating changes addressing conveyance, storage and the operations of both. The amendment process is open, transparent and inclusive, involving public Council meetings and workshops, stakeholder listening sessions, as well as independent science review or Delta Independent Science Board review. In 2017, the Council is preparing for its 2018 review of the Delta Plan as required by the Delta Reform Act.

12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?

Agency representatives serve as members of the Delta Plan Interagency Implementation Committee (DPIIC) and regularly participate in monthly Council meetings. DPIIC, Council and Delta Independent Science Board meetings are webcast and allow for public comment. Council members and staff meet regularly with agency, scientific community and stakeholder representatives as part of routine Council activities. Most technical review occurs in interagency meetings and in formal processes associated with the Delta Science Program and its products. Delta Plan review and amendment processes include public meetings and workshops that include involvement of all interested parties.

13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.)?

Sections of the Delta Plan are currently being amended based on new or updated information as described above. The five-year review of the Delta Plan called for in the Delta Reform Act is being planned in 2017 for implementation in 2018.

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders
generally perceive the science team as an independent and reliable source of information?

The Delta Lead Scientist who leads the Delta Science Program is selected through a competitive process to serve up to two terms of up to three years each. The Delta Science Program is composed of 18 staff including scientists and engineers. The Delta Independent Science Board of 10 nationally- and internationally-renowned scientists and engineers is appointed by the Delta Stewardship Council and is charged with providing oversight of the scientific research, monitoring, and assessment programs that support adaptive management of the Delta through periodic reviews of each of those programs. The science community served by these groups is composed of several hundred directly involved agency, academic, consultant and stakeholder scientists and many others who express an interest. The Delta Science Program and Delta Independent Science Board are perceived as reliable sources of independent scientific information within the agency and stakeholder communities.

15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?

The use of conceptual and quantitative computer models is promoted by the Council’s three-phase, nine-step adaptive management framework. Both types of models are used to support at least some of most agencies’ science and management efforts. The importance of community models, integrated models and structured decision making has been recognized through recent reports from the Delta Modeling Summit (http://www.deltacouncil.ca.gov/docs/agenda-item-4attachment-45integratedenvironmentalmodelingpolicybrief) and DPIIC Science Enterprise Workshop (http://www.deltacouncil.ca.gov/docs/agenda-item-4attachment-44complete-proceedings-report-science-enterprise-workshop), which both recommend enhancements to current modeling efforts.

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

Data are not currently managed in a central location. The Interagency Ecological Program (IEP) coordinates and provides Estuary and Delta aquatic ecosystem monitoring information, and the California Water Quality Monitoring Council is developing portals that provide access to water quality data and information. The USGS, DFW, SWRCB and DWR all provide access to various types of water data. Overall access to data is expected to improve with implementation of the recently-passed 2016 Open and Transparent Water Data Act (AB 1755) which requires collection and sharing of water data.
17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring and research, c) programmatic evaluation and reporting, and d) general program management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?

Funding is primarily received through State General Fund appropriations ($19 million), a small amount of special funding ($0.8M) and authority to accept funding through reimbursable agreements with state (up to $4.5M) and federal (up to $2.8M) agencies. Funding has been relatively stable. Other agencies provide the bulk of funding for implementing Delta Plan policies and recommendations.

The DSC has approximately 69 employees.

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?

No specific TMDL drives Delta Plan implementation.

19) Is your conservation plan recognized as excelling in some area, and what is it?

The Delta Plan is only four years old but has been recognized for its integrative nature as well as its strong reliance on science to guide policy.

20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?

The Council has been working on refining the Delta Plan performance measures to make them more quantitative; however, data collection and availability are areas to improve upon. There is some funding to address this issue, but it is insufficient. It will require a collaborative effort across government agencies to collect, access, and analyze the data needed to support all Delta Plan performance measures.
Name of program: Everglades Restoration Program

Please provide short answers to the following six statements: strongly agree, agree, neutral, disagree, strongly disagree, not applicable, or your can provide a different qualified answer.

1) Our plan or program has a clearly stated purpose with tiered goals, objectives and actions to deliver the purpose of the plan. Strongly agree

2) The program strives to be accountable for achieving its goals and must monitor relevant aspects of the environment to demonstrate status and progress. Strongly agree

3) The best available science is regularly integrated into program assessments. Strongly agree

4) Our plan utilizes an adaptive management process to direct research and management actions based on monitoring and/or modeling results. Strongly agree

5) As part of being accountable, progress towards achieving the plan goals is communicated objectively and regularly. Strongly agree, regularly but only 1x/5yrs. in a comprehensive manner.

6) Results must be expressed in terms understandable to the public and decision-makers, but the underlying data is available and easily accessible to all stakeholders. Strongly agree

This next set of questions can be answered briefly, or in longer form if you wish to provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated environmental indicators for your program? (This does not need to be an exhaustive or complete listing.)

The general goal is restoration, preservation and protection of the S. Florida Ecosystem while providing for other water-related needs of the region, including water supply and flood control. Environmental indicators include but are not limited to: oysters, seagrass, benthic infauna, pan fish, cyanobacteria, SAV, EAV, wading birds, prey fish, cray fish, tree islands, ridge and slough, spotted seatrout, WQ. Other hydrologic indicators include water stage, duration and flows and salinity.

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)
We look for key indicators of the health of the unique regions of the Everglades system. Other considerations include those above but those are secondary.

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

Collaboration is at the heart of everything we do. The CERP and RECOVER program is made up of 12 Federal and State Agencies including the Miccosukee and Seminole Tribes of Florida, many local agencies are also involved. All input is taken in, discussed but if needed the two main agencies (USACOE and SFWMD) will make a final call on a decision. What helps is our well thought out framework, guidelines, program management plans, programmatic regulations (in WRDA 2000, 2007) and GCM’s (Corp guidance memos). There was a lot of planning and thought that went into the process of this program 17+ yrs ago, and this initial effort has been updated and expanded as time went by.

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?

As mentioned above the two funding agencies (ACOE and SFWMD) are the main decision making agencies but input is taken from all others as well as stakeholders. RECOVER has a Leadership group with one rep. form each agency, an Executive Committee and regional coordinators who all have responsibilities in moving forward the process. If more detail is needed let me know and I can send a copy of our PMP (program management plan) that spells this out in more detail.

11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?

Once every five years we produce our System Status Report which is a comprehensive accounting of the newest monitoring data, modeling and project construction and operation reporting. Teams include Principle Investigators who are under contract to collect and report on our ecological indicators, other SF scientists, RECOVER regional coordinators, for each SSR leaders from the ACOE and SFWMD are assigned to organize and facilitate the production. The results are objective, but in an attempt to improve our communication to a variety of audiences for our next report (2019) we have hired a group form the University of Maryland, Center for Environmental Science, Integration and application Network who produce “Report Cards” all around the world to help us. We do not do an independent peer review of the SSR.
12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?

The first two are involved to some extent to all 3, each agency is invited but some have more participation then others depending on the agency focus and resource availability. Public Stakeholders have input but do not work as directly on the above, they give comment which is welcome.

13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.)?

The SSR is our main document that tracks ecological indicators. We have had to cut back on indicators over time due to budget constraints not due to scientific findings. The SSR strives to report on trend, discuss stressors and drivers in the system (why are things happening), and inform adaptive management at both the planning and implementation and operational levels.

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders generally perceive the science team as an independent and reliable source of information?

As mentioned before our science is governed by the RECOVER leadership team and we have participation at some level from the 12 agencies and 2 tribes. The structure mentioned above guides the management of our work and the additional scientists under contract that do our monitoring. I think the plan and our assessments of data are generally perceived as top-notch (we hire the best experts in the field who in many cases have spent their entire careers on Everglade science) and reliable.

15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?

CEM’s are used and were the basis for much of the original Monitoring and Assessment Plan (MAP). They were originally published in 2005 and are currently being updated for the first time. The program uses many other models in our evaluations and planning, hydrologic, hydrodynamic and ecological modeling tools are used in future predictions to guide project planning and to forecast out how a given indicator might
respond to a restoration activity. They are both very large system-wide models, regional and some site specific.

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

Data is centrally managed. We use what we call CERPzone which is accessible to anyone who has a password. There is a process to get a password and not all public can get one. It is more for people working directly on our monitoring and assessment activities. Our reports such as the SSR and others are widely available on the web. We have QA/QC protocols in place.

17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring and research, c) programmatic evaluation and reporting, and d) general program management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?

All funding comes from the federal (ACOE) budget under the WRDA bills and from the State of Florida. Some other agencies contribute in-kind with staff time. I refer you to page 54 of the NAS report on Progress Toward Restoring the Everglades 2016 report for many more details as well as funding levels. https://www.nap.edu/catalog/23672/progress-toward-restoring-the-everglades-the-sixth-biennial-review-2016

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?

The state of Florida has TMDL’s for many water bodies all over the state. CERP does integrate this into our work per say, but is greatly influenced by the WQ consent decree for phosphorus levels into ENP.

19) Is your conservation plan recognized as excelling in some area, and what is it?

It is a restoration plan not really a conservation plan. It is widely recognized for it size, complexity, scientific and engineering rigor but the slow pace of restoration progress is a problem (once again see the NAS report for more…)

20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?
More money should/could be spent on science and modeling to incorporate new major stressors such as climate change and exotic species. Monitoring has been reduced from what we thought was our optimal plan (MAP 2009). Additional active adaptive management field scale experiments would be very helpful to tackle some key engineering and scientific uncertainties. We currently do not have the funding to make these and other improvements in our science and AM program.
Name of program: Great Barrier Reef Plan

(Response to questionnaire not received.)
Name of program: Great Lakes Water Quality Agreement

Please provide short answers to the following six statements: strongly agree, agree, neutral, disagree, strongly disagree, not applicable, or your can provide a different qualified answer.

1) Our plan or program has a clearly stated purpose with tiered goals, objectives and actions to deliver the purpose of the plan. Yes, the purpose is stated in the Great Lakes Water Quality Agreement (GLWQA) however the goals are not tiered or described in great detail.

2) The program strives to be accountable for achieving its goals and must monitor relevant aspects of the environment to demonstrate status and progress. Yes, but the IJC-GLRO monitors the progress of the parties using monitoring data that is collected by other organizations.

3) The best available science is regularly integrated into program assessments. Yes, often contracted or contributed by expert advisory boards, task forces and reference groups.

4) Our plan utilizes an adaptive management process to direct research and management actions based on monitoring and/or modeling results. The IJC has created a Great Lakes Adaptive Management committee to assist its boards of control.

5) As part of being accountable, progress towards achieving the plan goals is communicated objectively and regularly. Triennial reports of progress.

6) Results must be expressed in terms understandable to the public and decision-makers, but the underlying data is available and easily accessible to all stakeholders. Yes

This next set of questions can be answered briefly, or in longer form if you wish to provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated environmental indicators for your program? (This does not need to be an exhaustive or complete listing.)

Protection and restoration of the chemical, physical and biological integrity of the Great Lakes. 9 general objectives of the GLWQA, Great Lakes “Vital Signs” and SOGL indicators and sub-indicators.

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)
“Vital Signs” were selected by the Science Advisory Board as a small set of indicators that could effectively communicate progress and conditions to the general public. Other indicators are effectively indices of relevant environmental data. See publications and material available on www.ijc.org for more details. IJC makes recommendations to the governments of the U.S. and Canada on ways to more effectively achieve and measure progress on the general and specific goals of the GLWQA. The IJC uses expert advisory panels to inform its advice to governments.

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

IJC advisory boards are amalgamated from representatives of a diverse collection of US and Canadian agencies and organizations. Applied science and “pure” academically oriented interests must be represented by members of boards. One board is more policy oriented, whereas others are science and management oriented.

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?

Boards submit work plans to the IJC and commissioners approve projects. Members communicate with networks of peers to assure that proposals add to the knowledge base and avoid duplication of efforts.

11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?

The President and Prime Minister appoint IJC Commissioners. Representatives of the governments meet semi-annually (at a minimum) to discuss activities and progress. Although the IJC is an independent bi-national commission, the governments hold the “power of the purse.” The IJC depends on science based advice, transparency and public consultation. The IJC will on occasion have contracted reports peer-reviewed, but often uses expert consultations/workshops to ground-truth advice developed by its boards and other advisors. This is primarily a collaborative, consultative process, not an overly-prescriptive, formal process.

12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?
Representatives of stakeholder organizations serve as board members in an advisory capacity. Public consultation is conducted on draft reports. Work groups provide input on programs and indicators.

13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.)?

Sometimes IJC reports have an impact on governments, sometimes they are ignored, but they are all publically available.

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders generally perceive the science team as an independent and reliable source of information?

Experience and expertise. Co-chairs and staff are selected by panels and approved by commissioners. Advisory board members serve in their “personal and professional” capacity and are generally perceived as independent and reliable sources. The IJC is also generally perceived as independent and reliable.

15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?

Not really.

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

Not by IJC

17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring and research, c) programmatic evaluation and reporting, and d) general program management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?
Federally funded. See IJC annual reports to get a grasp of allocations. Budgets are public records. Budgets have remained flat while personnel costs have risen and costs have inflated. Funding is reasonably stable in comparison to most programs. IJC received some GLRI funds for studies where it claimed no overhead and personnel hours were all an in-kind contribution. The volunteer experts on advisory boards provide “free” consultation to the IJC and in turn, governments, so it is a relatively good return on investment. The GLRO budget is approximately $3M.

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?

N/A

19) Is your conservation plan recognized as excelling in some area, and what is it?

N/A

20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?

Public awareness and education; yes.
Name of program: Lake Champlain Basin Program

Please provide short answers to the following six statements: strongly agree, agree, neutral, disagree, strongly disagree, not applicable, or your can provide a different qualified answer.

1) Our plan or program has a clearly stated purpose with tiered goals, objectives and actions to deliver the purpose of the plan. Agree

2) The program strives to be accountable for achieving its goals and must monitor relevant aspects of the environment to demonstrate status and progress. Agree

3) The best available science is regularly integrated into program assessments. Strongly agree

4) Our plan utilizes an adaptive management process to direct research and management actions based on monitoring and/or modeling results. Agree

5) As part of being accountable, progress towards achieving the plan goals is communicated objectively and regularly. Strongly agree

6) Results must be expressed in terms understandable to the public and decision-makers, but the underlying data is available and easily accessible to all stakeholders. Agree

This next set of questions can be answered briefly, or in longer form if you wish to provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated environmental indicators for your program? (This does not need to be an exhaustive or complete listing.)

 Goal 1: Clean water –
 Indicator: Frequency of harmful algal blooms
 Healthy Ecosystems
 Indicator: frequency of new aquatic invasive species
 Thriving Communities
 Indicator: access to Lake Champlain
 Informed & Involved Public
 Indicator: none – to be developed.

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)

 • Ease & cost of data collection
• Data longevity – are historic data available, and will these data be available going forward with current monitoring efforts
• Ability to interpret data to public
• Scale at which we can infer trends from data - e.g. farm level or subwatershed level?

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

• Interagency collaboration is critical – this is the reason the Lake Champlain Basin Program was created – to ensure cooperation and collaboration among the different jurisdictions of Lake Champlain (US federal, the States of New York and Vermont, the Province of Quebec, local municipalities)
• All partners are at the table when the Lake Champlain Management plan is updated (most recently, June 19, 2017) and the plan is developed with an inclusive approach to provide all partners opportunities to inform priorities in the new plan

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?

The Lake Champlain Steering Committee, via the Lake Champlain Basin Program, is charged with ensuring coordination of efforts across the multiple jurisdictions managing Lake Champlain. The Steering Committee makes all decisions regarding application of funding from several US agencies, including the EPA, Great Lakes Fishery Commission and National Park Service. The LCBP also serves as a central point of communication for all partners working within the Lake Champlain watershed.

11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?

• We update the Lake Champlain State of the Lake and Ecosystem Indicators report every 3 years. This is the responsibility of the Lake Champlain Basin Program, with advice and feedback from all partners we work with.

12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?
Roles and responsibilities vary among organizations providing funding to certain programs and those who do not. The LCBP is constructed in a way to allow for different stakeholder groups to provide advice and input at many different levels. We have the Lake Champlain Steering Committee, which sets the annual budget priorities for the LCBP (approximately $5 million). The Steering Committee is represented by about 6 different US federal agencies, 4 different branches of government each in NY, VT, and Quebec, scientists, culture & heritage, education & outreach, and three citizen representatives representing VT, NY, Quebec. We also have advisory committees (to the Steering Committee) providing feedback from each of these perspectives for annual reporting, program goals and indicators.

13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.)?

The indicators have not been adjusted since an initial basin-wide survey was conducted ca. 2002 to develop indicators that are useful and important to both resource managers and the general public. This is something that we need to work on updating for Lake Champlain, and intend to do so in fall 2017. http://sol.lcbp.org/

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders generally perceive the science team as an independent and reliable source of information?

Key considerations include the quality and repeatability of the data to be used for informing indicators. Our science team (Technical Advisory Committee) currently consists of about 25 people representing state and federal agencies and academic institutions. We do occasionally have members representing NGOs in the watershed as well, but none at this time due to staff transitions. Membership on this committee is determined by an individual’s area of expertise, not who they work for. We have three standing seats on this committee who serve as official representatives for VT, NY and Quebec. The Chair is selected by nomination, and approval by the Lake Champlain Steering Committee. Historically, Chairs of this committee have been associated with local academic institutions, not government agencies.

15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?
Conceptual models are not heavily utilized in this program. We frequently support research studies that do build and develop predictive models, however. Utility of recently supported models has ranged from identification of “critical source areas” of phosphorus within a subwatershed to economic models to begin to determine the “value” of Lake Champlain to the region.

Models have been an effective tool, if used with caution. We do need to do a better job of following up on modeling projects after their funding is complete to determine if the outcomes of the models were realized. Other research programs have used models that we built with LCBP funds and updated them via other funding (e.g. NSF).

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

For the Lake Champlain Long-Term Monitoring program and our Cyanobacteria monitoring program, yes. The State of Vermont, with LCBP funding, currently coordinates data, QA, and distribution for these two programs on behalf of all jurisdictions.

For other short-term projects, not at the moment – we are actually building this capacity this summer.

17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring and research, c) programmatic evaluation and reporting, and d) general program management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?

We are currently 100% federally funded. In FY16, Approximately 20% of our budget supports program management and staffing, 20% supports long-term monitoring programs, 25% supports research, and the remainder supports on-the-ground implementation or outreach projects.

The State of Vermont provides our required non-federal match (approximately $1 million) for our EPA funding.

Our funding is as stable as can be expected with the current federal administration.

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?
The phosphorus TMDLs for Lake Champlain are not integrated into the management plan and performance reporting. This is the responsibility of the States of Vermont and New York.

19) Is your conservation plan recognized as excelling in some area, and what is it?

The new plan has been approved for 24 hours, so a little too early to tell yet. The previous plan, in effect from December 2010 to yesterday, was extremely comprehensive, to the point where it did not serve as a useful tool for establishing annual priorities in our budget process. http://www.lcbp.org/about-us/opportunities-for-action/

20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?

We need to find useful ways to document progress. Many of our goals are long-term goals, and more short-term goals would be helpful to use to report back to the public on progress. This is something I hope to work on this fall.
Name of program: Long Island Sound Study

Please provide short answers to the following six statements: strongly agree,
agree, neutral, disagree, strongly disagree, not applicable, or your can provide a
different qualified answer.

1. Our plan or program has a clearly stated purpose with tiered goals, objectives and
 actions to deliver the purpose of the plan. STRONGLY AGREE

2. The program strives to be accountable for achieving its goals and must monitor
 relevant aspects of the environment to demonstrate status and progress. STRONGLY
 AGREE

3. The best available science is regularly integrated into program assessments. AGREE

4. Our plan utilizes an adaptive management process to direct research and
 management actions based on monitoring and/or modeling results. AGREE

5. As part of being accountable, progress towards achieving the plan goals is
 communicated objectively and regularly. AGREE

6. Results must be expressed in terms understandable to the public and decision-
 makers, but the underlying data is available and easily accessible to all stakeholders.
 AGREE

This next set of questions can be answered briefly, or in longer form if you wish to
provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated
environmental indicators for your program? (This does not need to be an exhaustive or
complete listing.)

The Long Island Sound Comprehensive Conservation and Management Plan (CCMP)
contains an overall vision "The vision for the Sound is of waters that are clean, clear,
safe to swim in, and charged with life. It is a vision of waters nourished and protected
by extensive coastal wetlands, by publicly accessible, litter-free beaches and preserves,
and of undeveloped islands. It is a vision of abundant and diverse wildlife, of flourishing
commercial fisheries, of harbors accessible to the boating community, and of a regional
consciousness and a way of life that protects and sustains the ecosystem."

The CCMP has four themes. Each theme has an overall goal. Those themes and
associated goals are:

- Clean Waters and Healthy Watersheds – Improve water quality by reducing
 contaminant and nutrient loads from the land and the waters impacting Long
 Island Sound.
• Thriving Habitats and Abundant Wildlife – Restore and protect the Sound’s ecological balance in a healthy, productive, and resilient state for the benefit of both people and the natural environment.
• Sustainable and Resilient Communities – Support vibrant, informed, and engaged communities that use, appreciate, and help protect Long Island Sound; and.
• Sound Science and Inclusive Management – Manage Long Island Sound using sound science and cross-jurisdictional governance that is inclusive, adaptive, innovative, and accountable

The CCMP included 20 ecosystem targets. These are indicators for which a specific measurable outcome was set. The list of ecosystem targets is available at http://longislandsoundstudy.net/about/our-vision/

The program tracks additional environmental indicators that support evaluation of the ecosystem targets. While our website is being updated, the current list of support indicators is available at http://longislandsoundstudy.net/research-monitoring/long-island-sound-environmental-indicators/

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)

The CCMP includes a technical background and explanation of the quantitative ecosystem targets. Explanation is provided for each target on how and why the given metric and specific target were chosen and how progress toward the target will be measured (e.g., what the baseline value is, clarification of specific terms, what datasets will be used, etc.). The targets were selected based on all the factors listed in the question, but particularly availability of data and relevancy to meetings goals and objectives.

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

This is a critical aspect of plan development. A team of federal, state, and private stakeholders developed the CCMP, goals, and the ecosystem targets. In addition, the plan went through extensive agency review and sign off, in additional to open public review.

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?
The Long Island Sound Study uses a distributed management structure. While the U.S. EPA provides overall administrative support through a program office, program funding is provided to state and other agencies for coordination, implementation, science, monitoring, etc. The multi-agency team meets regularly to communicate and coordinate efforts.

11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?

The EPA Office of Water conducts a formal program evaluation approximately every five years, most recently in 2015. The LISS has also supported independent evaluation of some program elements. For example, the Long Island Sound Futures Fund, a competition to fund local implementation projects was independently evaluated by an external consultant. External model evaluation groups have also been used to provide input to complex technical projects with regulatory and policy implications.

This program evaluation is different from regular evaluations and reports on the “state of the ecosystem” or “implementation progress” reports. These are internal program products that get input from program participants but are not independently peer-reviewed.

12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?

See answer to question 4. The multi-agency team provides overall program coordination. We also support an external Science and Technical Advisory Committee and Citizen Advisory Committee. These groups provide independent evaluation and input on science and policy.

13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.)?

Our trend has been toward simplification in both the number of actions contained in the plan and in focusing on key ecosystem indicators with targets. This is partly a consequence of resource limitations requiring that we focus our tracking and evaluation of what matters most.

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders
generally perceive the science team as an independent and reliable source of information?

The LISS supports a science coordinator whose job is to lead and integrate science among the many scientists and organizations at work in the LIS watershed. The position is responsible for assisting in the development and management of technical projects and programs of the LISS, and developing and maintaining professional, scientific, and technical contacts among the LISS partners. The LISS Science Coordinator acts as science liaison between the LISS and federal, state, and local scientists and managers, and works with the external Science and Technical Advisory Committee (STAC) to prioritize LIS research needs and apply research results into LISS management actions. The STAC is comprised of around 35 scientists and engineers from government, universities, and NGOs. The STAC is headed by two co-chairs, one from Connecticut and one from New York. The STAC is advisory only and is not responsible for program tasks.

15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?

The LISS program early on invested in research, monitoring, and technical support to develop water quality and circulation models of Long Island Sound (1990). These models were fundamental to the development of nitrogen reduction targets for LIS (See #12 below). Later, the regulated community (New York City) expanded and refined the models, supporting additional data collection (2000), calibration, and validation. Now LISS is evaluating the need for the next generation of modeling tools to support eutrophication management.

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

As discussed in #4, the LISS uses a distributed management structure. Data storage, quality assurance, and distribution is the responsibility of the data collector. Assistance agreements require development of quality assurance program plans for all data collection. LISS staff then work to access and assess data necessary for program evaluation and reporting, and to foster interagency efforts. Lack of a centralized data management and GIS team does impede the comprehensive analysis and presentation of data (Better data management and GIS implementation are important needs of the program.)

17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring
and research, c) programmatic evaluation and reporting, and d) general program management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?

The LISS is funded through a federal appropriation that has been steady the past five years at approximately $4.5 million/year. State and local funds match the federal awards. The chart below shows the general breakdown of funds for 2013 but is applicable through 2016. EPA generally covers program administrative costs (leasing office space, EPA staff) with a portion coming from the coordination and PIE categories. Detailed work plans with budget breakdowns and descriptions are available on line. For example, see http://longislandsoundstudy.net/2017/03/2016-work-plan/.

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?

The LISS was fundamental to the research, monitoring, modeling, and policy development that led to New York and Connecticut developing the 2000 Total Maximum Daily Load to Achieve Water Quality Standards for Dissolved Oxygen in Long Island Sound
(TMDL) to address summertime bottom water hypoxia conditions in the main stem of Long Island Sound. The LISS subsequently has supported implementation of the TMDL, tracked progress, evaluated ecosystem response, and recommended refinements in implementation strategies. Most recently, EPA has announced a new Nitrogen Reduction Strategy with a greater focus on local waters and is working with the states on its implementation. Our emphasis is on Sound-wide issues; local TMDLs to address local issues are developed independently of the program.

19) Is your conservation plan recognized as excelling in some area, and what is it?

The LISS has focused on two areas: 1) eutrophication impairments to water quality, particularly open water hypoxia, and 2) habitat restoration and protection. The program has also invested in public involvement, outreach, and education. I think you could highlight the likely hypoxia reduction in response to the N reductions as well as some of the land acquisition for habitat protection.

20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?

Improving technical tools for assessing and managing eutrophication is a key science priority. An attached file shows recommendations in this area resulting from a recent STAC meeting. Partnerships with the regulated community will be necessary to fully meet these needs.
Name of program: Puget Sound Partnership

Please provide short answers to the following six statements: strongly agree, agree, neutral, disagree, strongly disagree, not applicable, or your can provide a different qualified answer.

1) Our plan or program has a clearly stated purpose with tiered goals, objectives and actions to deliver the purpose of the plan.

Agree – qualification in that the plan does not describe actions needed to achieve clearly stated “targets” (though such plans are in development).

2) The program strives to be accountable for achieving its goals and must monitor relevant aspects of the environment to demonstrate status and progress.

Strongly agree – we report on progress toward recovery using our Vital Signs and targets we have set (desired future conditions). Reporting is on psp.wa.gov and in biennial State of the Sound reports.

3) The best available science is regularly integrated into program assessments.

Agree – though we struggle to assess even the subset of conditions we have adopted as Vital Signs, much less other “ancillary” measures that would provide a richness to our understanding of conditions and the contributions of recovery efforts.

4) Our plan utilizes an adaptive management process to direct research and management actions based on monitoring and/or modeling results.

Agree – see above re: limitations of monitoring and also note that a 2-year planning cycle has impeded our ability to consistently integrate learning from monitoring and research into successive iterations of our recovery plan.

5) As part of being accountable, progress towards achieving the plan goals is communicated objectively and regularly.

Strongly agree – see comment above for question 2.

6) Results must be expressed in terms understandable to the public and decision-makers, but the underlying data is available and easily accessible to all stakeholders.

Strongly agree – our Vital Signs were adopted by our Leadership Council which gave significant consideration to the communication merits of proposed/possible measures; our reports are very brief but psp.wa.gov Vital Signs pages provides links to underlying data.
This next set of questions can be answered briefly, or in longer form if you wish to provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated environmental indicators for your program? (This does not need to be an exhaustive or complete listing.)

See 6 goals in Washington State statute at RCW 90.71.

See Vital Signs adopted to represent these goals. And targets adopted to specify desired future conditions for these Vital Signs and their indicators. Information available at psp.wa.gov.

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)

An Indicators Action Team (IAT), an interdisciplinary group of primarily scientists, proposed a “Dashboard of Vital Signs” for adoption by a Leadership Council. The criteria used by the IAT included current availability, technical merits, communication merits, etc.

A review panel under the auspices of the Washington State Academy of Sciences critiqued this approach and recommended that we first “qualify” indicators based on technical considerations and then apply social and feasibility considerations to select from among the technically qualified indicators. We have commissioned a report to attempt this approach; revisions are being made to address comments from peer review.

Copies of these materials for details about criteria and recommendations are available on request

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

Interagency collaboration including state, federal, local governments and tribes is VERY important to our program. Institutional structures that ensure engagement of partners from various caucuses are key tool for us. Our Ecosystem Coordination Board has multiple seats for members of the Federal Caucus, State Caucus, Local Government Caucus, and tribes. The Steering Committee of the PS Ecosystem Monitoring Program likewise has allocated seats for members from these (and other) caucuses.
Overall program goals are established in state statute – the stakeholder engagement in legislative deliberation and action would be the primary avenue for revision to overall goals.

Vital Signs to represent our goals and targets to express desired future conditions are science-informed policy decisions. Our stakeholder bodies have been invited to share their perspectives on alternative Vital Signs and target statements and these perspectives have been considered as a non-representational Leadership Council makes the organization’s decisions.

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?

Project implementation – dispersed to a variety of entities who “own” actions; as of 2016 actions are included in the plan via responses to solicitation of actions where the solicitation declares regional priorities.

Program monitoring 1: monitoring of action implementation is centralized at the Puget Sound partnership, with action owners asked to self-report on progress semi-annually

Program monitoring 2: ecosystem monitoring investigations and reporting are dispersed to lead organizations (primarily government agencies) with coordination via a PS Ecosystem Monitoring Program, which includes participation from a number of partner organizations (described above for Steering Committee)

Effectiveness evaluation: mix of dispersed to programs that evaluate themselves and centralized at PS Partnership/PSEMP where data are “mined” to develop assessments through analysis of existing information

Research: dispersed to entities in the region with resources to conduct or commission studies (state agency science programs, federal agency centers and programs, local government science programs, Sea Grant, private efforts such as SeaDoc Society); the PS Partnership’s Science Panel prepares a “science work plan” that identifies priority science work actions but this merely lists items that “should” be done but does not provide/direct resources to these efforts

Reporting: mix – see above for description of centralized State of the Sound and Vital Sign reporting but also note that science programs and PSEMP work groups also develop their own reporting. Another centralized effort: Salish Sea stories published by Puget Sound Institute as partner group at University of Washington.

11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?
External evaluations have been occurring since the PS Partnership was established in 2007:

- Washington State Legislature’s joint legislative audit and review committee (JLARC) reviewed PS Partnership in 2011 and again in 2016
- Washington State Academy of Sciences conducted an early evaluation of the Partnership – focused on our identification of ecosystem indicators – in 2013
- EPA review of the PS Partnership as a participant in the National Estuary Program (CWA Section 320) has occurred on about a 3-year cycle, most recently in 2014.

Except for WSAS, these did not assess the quality/nature of our goals or indicators.

Internal evaluations occur routinely, especially in the production of the State of the Sound report which includes comments from the Science Panel on progress in implementing the recovery plan.

12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?

Regular reporting – partners self-report the status of the activities they “own,” Indicator leads (principal investigators, typically at partner organization) provide reports on Vital Sign indicators including interpretation of progress toward recovery.

Program goal review – for overall goals, this is generally reserved for the legislature but the Science Panel has begun discussion of alternative frames for recovery re: resilience indicators for complex systems. For Vital Signs and their targets see answers above.

Indicator review – see answer above re: assessment of goals and indicators for role of WSAS. Other key participants are representatives of partner organizations who participate in (1) the topical work groups of the PS Ecosystem Monitoring Program and (2) interdisciplinary teams for Implementation Strategy development and (3) advisory teams for Strategic Initiatives. PS Partnership provides staff support for the PSEMP work groups. Partner organization provide the staff support and other infrastructure for Implementation Strategies and Strategic Initiatives.

13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.)?
Critique of and recommendation for improvements to our indicators and targets comes up routinely in our reporting on Vital Signs, in our State of the Sound reports, and in the planning of successive iterations of our recovery plan (Action Agenda). For the most part, we have not adapted our indicators in response to these critiques and recommendations preferring instead to offer stability in the measurement system up through our upcoming milestone of (recovery by) 2020.

One key exception is that we adopted revised human wellbeing indicators in 2015 in response to an indicator development effort that built from watershed scale up to Puget Sound-wide measures.

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders generally perceive the science team as an independent and reliable source of information?

A strategic science plan (2010) describes science-policy engagement through the steps of integrated ecosystem assessment (IEA) and the adaptive cycle as described in the Open Standards for the Practice of Conservation. These are further detailed in the Partnership's Adaptive Management Framework (2013).

Leadership for our science team comes in 3 primary forms:

1. Science Panel established as part of the Partnership, assigned to provide advice, synthesis, and science program development – members nominate themselves, vetting is through the Washington State Academy of Sciences, and (non-representational) appointments are made by the governor-appointed Leadership Council.
2. Chief scientist on the staff of the agency that operates under the direction of an Executive Director. In recent years this appointment has shifted to the Science & Evaluation Director with additional (sometimes) support from a Senior Science Advisor.
3. Puget Sound Institute – a joint program of (primarily) University of Washington and (secondarily) PS Partnership and U.S. EPA; director is ex officio member of Science Panel and institute is key collaborator of PS Partnership science & evaluation program.

Engagement with the science community extends into academia, private sector, and additional agencies but not to the extent desired/imagined. Science Panel membership brings some of this extension (e.g., Canadian federal agency science leader; UBC social scientist, retired private sector scientist, multiple faculty members from Washington’s public universities). PSEMP work groups and Steering Committee accomplish some additional extension. Planning and participation in biennial Salish Sea Ecosystem Conference is also a key tool in engagement of the science community.
15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?

Yes, we use conceptual models extensively especially in the sense of situation mapping and results chain development in the Open Standards for the Practice of Conservation. Uses include: development and selection of management options, selection of indicators and explanation of the findings of indicator monitoring, identification of uncertainties to address by research or monitoring investigation.

Quantitative modeling has not been broadly used in PS recovery. The Science Panel has identified this as a key issue – a science service that is not well developed or used. A question for us to address: what is the decision-making culture in PS and how would it be served or improved by development/use of additional (more quantitative) models.

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

Data are not centrally managed. We have a vision of “portals” to provide access to distributed data but have not actively developed or encouraged use of such portals.

We have a few good tools that could be better used: NANOOS data visualization, monitoring tools.org, MiradiShare

17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring and research, c) programmatic evaluation and reporting, and d) general program management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?

The Puget Sound Partnership provides backbone functions for the collective recovery effort. The Partnership is supported by ongoing government funding from (1) state appropriations (general fund, aquatic lands enhancement account, and state toxics account) and (2) federal awards (primarily EPA's CWA Section 320 NEP funds and Puget Sound Geographic Funds and NOAA Fisheries' Pacific Coast Salmon Recovery Funds.

The Partnership receives roughly $5.5M/year from federal sources and $3.75M/year from state for:
• Recovery planning (links to project planning, but doesn’t not fully fund project planning)
• Coordination of monitoring and research, including support for some monitoring studies and a few other scientific investigations
• Programmatic evaluation and reporting
• General program management, staff and operations (which includes the above efforts as well as coordination of nested scales of recovery, coordination of salmon recovery in the Puget Sound region, and coordination of stewardship programs)

Collaborations are key as partner investments are (1) the primary source of funding for project and program implementation (including implementation of scientific investigations) and (2) provide in-kind participation in efforts to collectively plan and evaluate recovery.

State and federal funding have been stable at level far below our articulated need for backbone function and project and program implementation. For example, we describe a funding gap of $300M/yr for habitat protection and restoration, $40M/yr for shellfish bed protection and restoration, and > $100M/yr for stormwater management.

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?

We have multiple TMDLs and TMDL-like “clean up plans” in effect as the Puget Sound ecosystem encompasses hundreds of “water bodies.”

One of our measures of freshwater quality is the number of water quality impairments (303d listings), many of which are addressed by development of TMDL or similar plans.

We also have a measure of marine water quality related to human-caused (e.g., via excess nutrients) depletion of dissolved oxygen. A TMDL-type approach is getting underway to address this issue.

TMDL and TMDL-like tools seem well positioned to help address water quality concerns in the Puget Sound region.

19) Is your conservation plan recognized as excelling in some area, and what is it?

I think we are recognized in two areas (both of which could be improved):
 (1) Setting targets as science-informed policy statements of desired future conditions for our indicators of ecosystem health.
 (2) Engagement of social sciences in supporting ecosystem recovery.
20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?

“Mainstreaming” Puget Sound recovery and protection issues and approaches into existing programs, investment decisions, and citizen behaviors. Puget Sound’s needs from state and local management of population growth and shoreline development are not clearly and uniformly addressed by local government programs or by the land development proposals put forward by the private sector and governments. We have insufficient program capacity to make such an improvement.

Using information from prior implementation to improve decisions about approaches to best achieve recovery and long-term protection. Our adaptive management philosophy assumes shared learning across the diversity of implementers but data collection, knowledge generation, and sharing of learning are all quite limited. We have insufficient program capacity to make such an improvement.
Name of program: San Francisco Estuary Partnership

Please provide short answers to the following six statements: strongly agree, agree, neutral, disagree, strongly disagree, not applicable, or your can provide a different qualified answer.

1) Our plan or program has a clearly stated purpose with tiered goals, objectives and actions to deliver the purpose of the plan.
 Strongly agree

2) The program strives to be accountable for achieving its goals and must monitor relevant aspects of the environment to demonstrate status and progress.
 Strongly agree (with partners)

3) The best available science is regularly integrated into program assessments.
 Strongly agree

4) Our plan utilizes an adaptive management process to direct research and management actions based on monitoring and/or modeling results.
 Strongly agree (as much as we can – correlating management actions and environmental responses at a high level is challenging)

5) As part of being accountable, progress towards achieving the plan goals is communicated objectively and regularly.
 Strongly agree

6) Results must be expressed in terms understandable to the public and decision-makers, but the underlying data is available and easily accessible to all stakeholders.
 Agree

This next set of questions can be answered briefly, or in longer form if you wish to provide context or more information (use as much room as needed).

7) What would you list as the primary set of prioritized goals and associated environmental indicators for your program? (This does not need to be an exhaustive or complete listing.)

Four primary goals: sustain and improve Estuary’s habitats and living resources; bolster the resilience of Estuary ecosystems, shorelines and communities to climate change; improve water quality and increase the quantity of freshwater available to the Estuary; Champion the Estuary. Goals, Objectives, Actions and Tasks are described in the 2016 Estuary Blueprint (http://www.sfestuary.org/ccmp/).

The State of the Estuary Report (http://www.sfestuary.org/about-the-estuary/soter/) includes 32 indicators of health that are monitored and will be reported on every 5-6
years. More may be added as data are collected and as the Estuary Blueprint exposes gaps.

8) What criteria do you use to select indicators or metrics of system condition? (For example, responsiveness, ease and cost of data collection, repeatability, public understanding, strength of linkage, etc.)

Available data (for analysis of trends), ease and cost of data collection, repeatability.

9) Collaboration among State and Federal agencies can be challenging to achieve. How important is interagency collaboration for your program and what are key factors that lead to a productive collaborative program? How are the unique perspectives of different individual agencies integrated when establishing or revising program goals?

Extremely important. We are a federally mandated program under EPA, with a regional agency as our host entity (association of bay area governments), and a strong state partnership (SF Bay regional water quality control board). We have a 35 member “Implementation Committee” responsible for program direction and implementation of the Estuary Blueprint, consisting of gov’t agencies at all levels, business interests, nongovernmental environmental orgs, academia.

10) To what extent is the decision-making and management centralized for project implementation, program monitoring, research, evaluation and reporting, and how is this work coordinated among agencies and other stakeholders?

Priorities are centralized through collaborative vision of region - the Estuary Blueprint. Agreement among multiple partners on long term goals and near term priorities. The Blueprint also supports other regional planning and policy docs that guide implementation, monitoring, etc (such as the SF Bay Joint Venture’s Implementation Plan, the Baylands Ecosystem Habitat Goals, the Subtidal Habitat Goals, and others).

11) How often are formal program evaluation reports conducted, including assessment of program goals and indicators? Among program participants, who conducts these evaluations, and how is leadership assigned? Are the results as objective as you would like? Is there independent oversight or peer-review of the evaluation reports?

As an EPA program, we have frequent and multiple reporting requirements. We must report on the progress of the Blueprint to EPA, semi-annually, and have in depth program evaluations every 5 years by EPA. We also report on habitat acres restored, $ spent, leverage $, etc to EPA every year.

12) What are the roles and responsibilities of the various participating stakeholders such as agency representatives, the science community, and public stakeholder groups in 1) regular reporting, 2) program goal review, and 3) indicator review?
We rely on partners to help us report on regional progress as we act as more a clearinghouse of partners and partner work. Same for program goals and indicator reviews – both the Estuary Blueprint and the State of the Estuary Report involve extensive partner participation.

13) Are the results of periodic evaluation reports used to adjust program goals, indicators or standards, and if so what is the process for adopting those changes? Has the trend been toward simplification over time, or toward increased complexity with more indicator tracking? What types of reports are produced on a regular basis (e.g., implementation activity, effectiveness evaluation, status and trend, etc.?)?

We are not as integrated as we could be in this regard, though we are working towards it with a stronger connection between our state of the estuary report, our evaluations reports and the estuary blueprint. The trend is towards increased complexity in terms of monitoring of indicators.

14) What are key considerations for incorporating and delivering the best science for your program? How is leadership for your science team determined and how large or extended is the participating science community? Do agency and public stakeholders generally perceive the science team as an independent and reliable source of information?

We rely almost entirely on our partners for generating the science that we base our programmatic considerations on. We do not have an established “science team”, but instead a network of science partners that we work with.

15) Are conceptual models utilized, and if so, how often are they updated? Are other types of models used in your program? For example, are models used to test management options, estimate the status of an indicator, identify research needs, select restoration projects for funding, or to assign restoration credits? Has modeling been an effective tool for your program? Does your program include efforts to validate and update the models?

We don’t use conceptual models directly, but many of our partners do.

16) Are program monitoring and evaluation data centrally managed and periodically updated for stakeholder use? In general terms, how is multi-agency data coordinated, stored, quality assured and distributed or otherwise made available?

We are not the central repository for data. The Estuary lacks a central repository, though it is certainly a topic of conversation among partners.

17) What are your major funding source categories (e.g., ongoing government funding, funding from the regulated community, private contributions). Roughly, what are average annual allocations to: a) project planning and implementation, b) monitoring and research, c) programmatic evaluation and reporting, and d) general program
management, staff and operations? Are collaborations with other agencies or groups a significant source of funding or in-kind support for the program? Is your funding stable?

Yearly federal appropriation, federal grants, state grants, local funding. 90% of our income is passed through directly to our partners for on-the-ground projects and those projects may include implementation, monitoring, etc.

18) If you have a TMDL in effect is it integrated into the management plan and performance reporting? What might be improved? Does the TMDL limit the evolution of your program?

We work closely with the SF Bay Regional Water Quality Control board to support TMDL implementation with specific projects.

19) Is your conservation plan recognized as excelling in some area, and what is it?

This version is fairly new (released Sept 2016) but we’ve gotten positive feedback for it being clear, manageable, trackable, and reflecting key regional priorities.

20) What do you see as areas to improve upon? Do you have funding and program capacity to make these improvements?

Need to diversity funding sources even more – can’t depend on federal funding. Would like to better integrate with local communities, and with land use and transportation planning.
Appendix B. Glossary of Common Terms Used in this Report.

The terminology used among programs reviewed in this document is not consistent, which often leads to frustration when trying to communicate ideas or even when trying to provide useful comparisons. TRPA management in the Lake Tahoe Basin uses some specific terminology that is unique to Tahoe as well as some terminology that is common to other programs. The Conservation Measures Partnership’s (CMP) “Open Standards” program strongly recommends the use of consistent terminology and provides some definitions. We have assembled a preliminary list that borrows from the CMP and other programs to begin the process of assembling a standard terminology set for general use at Lake Tahoe.

Adaptive Management – Adaptive management (AM), also known as adaptive resource management (ARM) or adaptive environmental assessment and management (AEAM), is a structured, iterative process of robust decision making in the face of uncertainty, with an aim to reducing uncertainty over time via system monitoring. In this way, decision making simultaneously meets one or more resource management objectives and, either passively or actively, accrues information needed to improve future management. Adaptive management is a tool which should be used not only to change a system, but also to learn about the system. Because adaptive management is based on a learning process, it improves long-run management outcomes. The challenge in using the adaptive management approach lies in finding the correct balance between gaining knowledge to improve management in the future and achieving the best short-term outcome based on current knowledge. (From https://en.wikipedia.org/wiki/Adaptive_management.)

DPSIR Framework – Driver-Pressure-State-Impact-Response Framework. Drivers are factors that result in pressures that cause changes in the system. Pressures are factors that cause changes in state or condition. State variables describe the condition of the ecosystem. Impacts measure the effect of changes in state variables. Responses are the actions taken in response to predicted impacts.

Ecosystem Attribute – Ecosystem attributes are characteristics that define the structure, composition and function of the ecosystem that are of scientific and/or management importance, but insufficiently specific and/or logistically challenging to measure directly (Environmental Protection Agency, 2008). Indicators provide a practical means to judge changes in ecosystem attributes.

Conceptual Model – A narrative description or diagram that represents the relationships between key factors identified through situation analysis that are believed to impact or lead to one or more environmental management targets. A good model should link these targets to threats, opportunities, stakeholders, and key intervention points (factors – threats, opportunities, or targets) in a conceptual model where a team can develop strategies that will influence those factors. It should also indicate which factors are most important to monitor.
Goal – A formal statement detailing a desired impact of a project, such as the desired future status of a target. A good goal meets the criteria of being *linked to targets, impact oriented, measurable, time limited,* and *specific.* Goals combine societal values and scientific understanding to define a desired ecosystem condition.

Indicator – A measurable entity related to specific information needed such as the status of a target/factor/outcome, change in a threat, or progress toward an objective. A good indicator meets the criteria of being: *measurable, precise, consistent,* and *sensitive.* Ecosystem indicators are quantitative biological, chemical, physical, social, or economic measurements that serve as proxies of the conditions of attributes of natural and socio-economic systems (Environmental Protection Agency, 2008).

Note: as used in many of the natural resource management programs reviewed here, indicators are often a composite variable representing a broader aspect of environmental health, measured by individual metrics. A metric, as we use this term, is a solitary measurement with an established protocol for its collection.

Objective – A formal statement detailing a desired outcome of a project such as reducing a critical threat. A good objective meets the criteria of being: *results oriented, measurable, time limited, specific,* and *practical.* If the project is well conceptualized and designed, realization of a project’s objectives should lead to the fulfillment of the project’s goals and ultimately its vision. Compare to vision and goal.

Outcome (Target, Standard) – The desired future state of an ecosystem component, structure or function) threat or opportunity factor (*normally quantified*). An objective is a formal (*more general, not quantified*) statement of the desired outcome.

Note: “outcome” is often interchanged with “target”, “attainment threshold”, or “desired future condition”. If the outcome is legally regulated, (specifically in the context of water quality) it’s often referred to as a “standard”. Most of the plans reviewed use the term “target” or “standard”. Lake Tahoe uses “threshold standard”, except when referring to the TMDL, (water quality) where “standard” is used.

Method (Protocol) – A specific technique used to collect data to measure an indicator. A good method should meet the criteria of being *accurate, reliable, cost-effective, feasible,* and *appropriate.*

Metric – A specific measurement variable with an established protocol for its collection. The Delta Stewardship Council, for example, distinguishes between the metric (what is specifically measured) and the indicator, which may represent some aggregate compilation of more than one metric.

Standard – Usually represents a numerical limit that's legally enforceable.
Strategy – A set of actions with a common focus that work together to achieve specific goals and objectives by targeting key intervention points, integrating opportunities, and limiting constraints. Often the strategy is driven by the evolving conceptual model. A good strategy meets the criteria of being: *linked, focused, feasible, and appropriate.*

Threshold Standard – This is a Tahoe-specific term that represents the nine categories for which the Tahoe Regional Planning Agency adopted environmental quality goals in 1982. Also known as Environmental Threshold Carrying Capacities, these nine Threshold Standard categories continue to encompass the highest level goals for environmental management at Lake Tahoe.

Threshold Standards:
1) Air Quality (AQ)
2) Fisheries (F)
3) Noise (N)
4) Recreation (R)
5) Scenic Resources (SR)
6) Soil Conservation (SC)
7) Water Quality (WQ)
8) Vegetation Preservation (V)
9) Wildlife (W)

Threshold Indicator – There are currently more than 170 Threshold Indicators (standards) under review by the TRPA. Each of these may include a specific numeric target, or a more general management objective, or sometimes may be simply expressed as a broad policy statement. These individual Threshold Indicators are organized into 34 indicator reporting categories that pertain to the nine TRPA Threshold Standards as shown below.

Threshold Standard - Indicator Reporting Categories:
1. Air Quality - Carbon Monoxide (CO)
2. Air Quality - Nitrate Deposition
3. Air Quality - Odor
4. Air Quality - Ozone (O3)
5. Air Quality - Regional Visibility
6. Air Quality - Respirable and Fine Particulate Matter
7. Air Quality - Sub-Regional Visibility
8. Fisheries - Instream Flow
9. Fisheries - Lahontan Cutthroat Trout
10. Fisheries - Lake Habitat
11. Fisheries - Stream Habitat
12. Noise - Cumulative Noise Events
13. Noise - Single Noise Events
14. Recreation - Fair Share Distribution of Recreation Capacity
15. Recreation - Quality of Recreation Experience and Access to Recreational Opportunities
16. Scenic Resources - Built Environment
17. Scenic Resources - Other Areas
18. Scenic Resources - Roadway and Shoreline Units
19. Soil Conservation - Impervious Cover
20. Soil Conservation - Stream Environment Zone
21. Vegetation - Common Vegetation
22. Vegetation - Late Seral/ Old growth Ecosystems
23. Vegetation - Sensitive Plants
24. Vegetation - Uncommon Plant Communities
25. Water Quality - Aquatic Invasive Species
26. Water Quality - Attached Algae
27. Water Quality - Deep Water (Pelagic) Lake Tahoe
28. Water Quality - Groundwater
29. Water Quality - Nearshore (Littoral) Lake Tahoe
30. Water Quality - Other Lakes
31. Water Quality - Surface Runoff
32. Water Quality - Tributaries
33. Wildlife - Habitats of Special Significance
34. Wildlife - Special Interest Species
Appendix C. Selected Examples of Adaptive Management Cycles.

Figure C-1. The GLWQA Management and Reporting Cycle.

Figure C-2. The Chesapeake Bay Partnership Management Cycle.
Figure C-3. San Francisco Bay Estuary Plan’s Adaptive Management Cycle.

Figure C-4. Nine-step framework for adaptive management depicted in the Delta Plan.
Figure C-5. Adaptive management strategy applied by the U.S. Army Corps of Engineers for projects of the Everglades Restoration Program.
Appendix D. Additional Program Graphics of Interest.

Figure D-1. Changes in GLWQA goals over time ("Identifying Future Improvements to Great Lakes Ecosystem and Human Health Indicators", S. K. Sinha and R. Pettit, Environmental Consulting & Technology Inc. Report, 35 pp, April 2016.)

Figure D-2. Relationship between time and space scales for biological indicators selected by the Everglades Restoration Program.
Figure D-3. Relationships between goals, objectives and actions for the San Francisco Bay Estuary reported on in the 2015 State of the Estuary report and the 2016 Management Plan.
STATE OF THE ESTUARY 2015 INDICATORS AND THE CCMP

<table>
<thead>
<tr>
<th>State Of The Estuary 2015 Indicator</th>
<th>CCMP Goals</th>
<th>CCMP Objectives</th>
<th>CCMP Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe For Swimming</td>
<td>Goal 1, 3</td>
<td>Objective a, b, i</td>
<td>Action 26</td>
</tr>
<tr>
<td>Safe For Aquatic Life</td>
<td>Goal 1, 3</td>
<td>Objective a, b, i</td>
<td>Action 24, 25, 27, 30</td>
</tr>
<tr>
<td>Fish Safe to Eat</td>
<td>Goal 1, 3</td>
<td>Objective a, b, i</td>
<td>Action 25, 27, 28</td>
</tr>
<tr>
<td>Freshwater Inflow</td>
<td>Goal 3</td>
<td>Objective a, b, h</td>
<td>Action 18</td>
</tr>
<tr>
<td>HABITAT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Water Habitat</td>
<td>Goal 3</td>
<td>Objective h</td>
<td>Action 26</td>
</tr>
<tr>
<td>Eelgrass</td>
<td>Goal 1, 2</td>
<td>Objective a, d, e</td>
<td>Action 1, 2, 4, 5, 9, 12, 15, 17</td>
</tr>
<tr>
<td>Tidal Marsh Extent</td>
<td>Goal 1, 2</td>
<td>Objective a, d, e</td>
<td>Action 1, 2, 3, 11, 15, 16</td>
</tr>
<tr>
<td>WILDLIFE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benthic Invertebrates</td>
<td>Goal 2</td>
<td>Objective a, e</td>
<td>Action 9</td>
</tr>
<tr>
<td>Fish</td>
<td>Goal 2, 3</td>
<td>Objective a, e, h</td>
<td>Action 1, 5, 6, 7, 9</td>
</tr>
<tr>
<td>Harbor Seals</td>
<td>Goal 2, 3</td>
<td>Objective a, e, i</td>
<td>Action 27, 28, 31</td>
</tr>
<tr>
<td>Winter Waterfowl</td>
<td>Goal 1, 2</td>
<td>Objective a, b, e</td>
<td>Action 3, 6, 8</td>
</tr>
<tr>
<td>Breeding Waterfowl</td>
<td>Goal 1, 2</td>
<td>Objective a, b, e</td>
<td>Action 3, 6, 8, 10</td>
</tr>
<tr>
<td>Shorebirds</td>
<td>Goal 1, 2</td>
<td>Objective a, b, e</td>
<td>Action 3, 6, 10</td>
</tr>
<tr>
<td>Herons & Egrets</td>
<td>Goal 1, 2</td>
<td>Objective a, b, e</td>
<td>Action 3, 6, 10</td>
</tr>
<tr>
<td>Tidal Marsh Birds</td>
<td>Goal 1, 2</td>
<td>Objective a, b, e</td>
<td>Action 3, 6, 9, 10, 12</td>
</tr>
<tr>
<td>Ridgway’s Rail</td>
<td>Goal 1, 2</td>
<td>Objective a, b, e</td>
<td>Action 3, 6, 9, 10, 12</td>
</tr>
<tr>
<td>PROCESSES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migration Space</td>
<td>Goal 1, 2, 4</td>
<td>Objective a, b, d, f, k</td>
<td>Action 2, 3, 4, 13, 15, 16, 17</td>
</tr>
<tr>
<td>Beneficial Floods</td>
<td>Goal 2</td>
<td>Objective d, e</td>
<td>Action 12, 26</td>
</tr>
<tr>
<td>Zooplankton as Food</td>
<td>Goal 1, 3</td>
<td>Objective a, b, c, h</td>
<td>Action 9, 18</td>
</tr>
<tr>
<td>Feeding Chicks</td>
<td>Goal 1</td>
<td>Objective b, e</td>
<td>Action 3, 6, 10</td>
</tr>
<tr>
<td>PEOPLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Water Use</td>
<td>Goal 3</td>
<td>Objective g</td>
<td>Action 18, 19, 20, 21, 22, 23, 24</td>
</tr>
<tr>
<td>Recycled Water Use</td>
<td>Goal 3</td>
<td>Objective g</td>
<td>Action 19, 22, 23</td>
</tr>
<tr>
<td>Public Access/Trail Access</td>
<td>Goal 4</td>
<td>Objective j, k, l</td>
<td>Action 31</td>
</tr>
<tr>
<td>State Of The Estuary 2015 Emerging Indicator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pervasive Pesticides</td>
<td>Goal 1, 3</td>
<td>Objective b, i</td>
<td>Action 7, 27</td>
</tr>
<tr>
<td>Oyster Beds</td>
<td>Goal 1, 2</td>
<td>Objective a, d, e</td>
<td>Action 5, 14, 29</td>
</tr>
<tr>
<td>Woody Riparian</td>
<td>Goal 1, 2</td>
<td>Objective a, e</td>
<td>Action 7</td>
</tr>
<tr>
<td>Watersheds</td>
<td>Goal 1</td>
<td>Objective a</td>
<td>Action 1, 2, 24</td>
</tr>
<tr>
<td>Managed Ponds</td>
<td>Goal 1</td>
<td>Objective a</td>
<td>Action 6</td>
</tr>
<tr>
<td>Sediment</td>
<td>Goal 1, 2</td>
<td>Objective a, d, e</td>
<td>Action 13, 24</td>
</tr>
<tr>
<td>Invasions</td>
<td>Goal 1, 3</td>
<td>Objective a, b, i</td>
<td>Action 9, 19</td>
</tr>
</tbody>
</table>

Figure D-4. Reporting on indicators in the San Francisco Bay Estuary 2016 Plan.
Figure D-5. Example of metric reporting to the public on San Francisco Bay Estuary health.
Figure D-6. Report card for the Great Barrier Reef Plan.